Abstract

Few-mode fibers (FMFs) have found applications in optical communications and sensors with attractive features that standard single mode fiber (SSMF) do not possess. We report our recent progress on FMF based optical sensors, and show the potential of utilizing the spatial dimension for multi-parameter sensing with discrimination capability. We first show a discrete type FMF sensor based on interferometer structure with a short FMF, utilizing the modal interference between either the polarizations (x and y) or the spatial modes (LP01 and LP11). We then show a distributed type FMF sensor by generating the stimulated Brillouin scattering (SBS) in a long FMF. We characterize the Brillouin gain spectrum (BGS) with a pump-probe configuration, and measure the temperature and strain coefficients for LP01 and LP11 modes. The proposed FMF based optical sensor can be applied to sensing a wide range of parameters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-functional fiber optic sensors based on mode division multiplexing

Yi Weng, Ting Wang, and Zhongqi Pan
Opt. Mater. Express 7(6) 1917-1933 (2017)

Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination

An Li, Yifei Wang, Jian Fang, Ming-Jun Li, Byoung Yoon Kim, and William Shieh
Opt. Lett. 40(7) 1488-1491 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  2. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
    [Crossref] [PubMed]
  3. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]
  4. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
    [Crossref]
  5. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express 19(9), 8808–8814 (2011).
    [Crossref] [PubMed]
  6. A. Li, A. A. Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, “Reception of Dual-Spatial-Mode CO-OFDM Signal Over a Two-Mode Fiber,” J. Lightwave Technol. 30(4), 634–640 (2012).
    [Crossref]
  7. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
    [Crossref] [PubMed]
  8. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [Crossref] [PubMed]
  9. B. Y. Kim, J. N. Blake, S. Y. Huang, and H. J. Shaw, “Use of highly elliptical core fibers for two-mode fiber devices,” Opt. Lett. 12(9), 729–731 (1987).
    [Crossref] [PubMed]
  10. A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).
  11. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [Crossref] [PubMed]
  12. Y. H. Kim and K. Y. Song, “Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating,” Opt. Express 22(14), 17292–17302 (2014).
    [Crossref] [PubMed]
  13. A. Li, Q. Hu, and W. Shieh, “Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis,” Opt. Express 21(26), 31894–31906 (2013).
    [Crossref] [PubMed]
  14. W. J. Bock and T. A. Eftimov, “Polarimetric and intermodal interference sensitivity to hydrostatic pressure, temperature, and strain of highly birefringent optical fibers,” Opt. Lett. 18(22), 1979–1981 (1993).
    [Crossref] [PubMed]
  15. K. Y. Song, Y. H. Kim, and B. Y. Kim, “Intermodal stimulated Brillouin scattering in two-mode fibers,” Opt. Lett. 38(11), 1805–1807 (2013).
    [Crossref] [PubMed]
  16. A. Li, Q. Hu, X. Chen, B. Y. Kim, and W. Shieh, “Characterization of distributed modal birefringence in a few-mode fiber based on Brillouin dynamic grating,” Opt. Lett. 39(11), 3153–3156 (2014).
    [Crossref] [PubMed]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

2014 (2)

2013 (2)

2012 (1)

2011 (3)

2009 (1)

2007 (2)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

2005 (1)

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

1994 (1)

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).

1993 (1)

1987 (1)

Al Amin, A.

Amin, A. A.

Astruc, M.

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Bigo, S.

Blake, J. N.

Bock, W. J.

Bolle, C. A.

Boutin, A.

Brindel, P.

Cerou, F.

Charlet, G.

Chen, S.

Chen, X.

Claus, R. O.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).

Culshaw, B.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).

Dong, X.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
[Crossref] [PubMed]

Eftimov, T. A.

Essiambre, R.-J.

Feng, X.

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Gao, G.

Gnauck, A. H.

He, Z.

Hotate, K.

Hu, Q.

Huang, S. Y.

Jankovic, L.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).

Kai, G.

Kim, B. Y.

Kim, Y. H.

Koebele, C.

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Li, A.

Lingle, R.

Liu, B.

Liu, Y.

Mardoyan, H.

McCurdy, A.

Michie, W. C.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Peckham, D. W.

Provost, L.

Pruneri, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Randel, S.

Ryf, R.

Salsi, M.

Shaw, H. J.

Shieh, W.

Shum, P.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Sierra, A.

Sillard, P.

Song, K. Y.

Sperti, D.

Tam, H. Y.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Tran, P.

Vengsarkar, A. M.

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).

Verluise, F.

Villatoro, J.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Winzer, P. J.

Yuan, S.

Zhang, W.

Zhou, G.

Zou, W.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

J. Lightwave Technol. (2)

A. Li, A. A. Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, “Reception of Dual-Spatial-Mode CO-OFDM Signal Over a Two-Mode Fiber,” J. Lightwave Technol. 30(4), 634–640 (2012).
[Crossref]

A. M. Vengsarkar, W. C. Michie, L. Jankovic, B. Culshaw, and R. O. Claus, “Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature,” J. Lightwave Technol. 12(1), 170–177 (1994).

Opt. Express (6)

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[Crossref] [PubMed]

Y. H. Kim and K. Y. Song, “Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating,” Opt. Express 22(14), 17292–17302 (2014).
[Crossref] [PubMed]

A. Li, Q. Hu, and W. Shieh, “Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis,” Opt. Express 21(26), 31894–31906 (2013).
[Crossref] [PubMed]

C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011).
[Crossref] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[Crossref] [PubMed]

A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express 19(9), 8808–8814 (2011).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Lett. (4)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of a fiber Sagnac loop interferometer sensor based on a PM-FMF.
Fig. 2
Fig. 2 (a) Measured transmission spectra (smoothed over 0.1 nm) of the PM-FMF SLI under different temperature, and (b) wavelength shift of the transmission minimum against temperature. y1 and y2 are the linear curve fittings for PMF and PM-FMF, respectively.
Fig. 3
Fig. 3 Schematic diagram of a fiber interferometer temperature sensor based on the intermodal interference between LP01 and LP11e modes in a PM-FMF. PC: polarization controller.
Fig. 4
Fig. 4 Measured transmission spectra (smoothed over 0.02 nm) of the PM-FMF intermodal interferometer under different temperature for (a) x-pol, (b) y-pol, and (c) wavelength shift of the transmission minimum against temperature. y1and y2 are the linear curve fittings for x- and y-polarization, respectively.
Fig. 5
Fig. 5 wavelength shift of the transmission minimum against strain. y1and y2 are the linear curve fittings for x- and y-polarization, respectively.
Fig. 6
Fig. 6 (a) Schematic diagram of a free-space mode multiplexer (MMUX), only one polarization is illustrated (both polarizations are used in experiment). (b) Spatial modes in the 5MF and the corresponding SLM phase patterns. CL1~CL3: collimating lens, M1/M2: turning mirror, BS: non-polarizing beam splitter.
Fig. 7
Fig. 7 Experimental setup for the proposed few-mode Brillouin optical time-domain analyzer (FM-BOTDA). MZM: Mach-Zehnder modulator; AOM: acousto-optic modulator; OBPF: optical band-pass filter; MS: mode stripper; MC: mode converter; TDS: time-domain (sampling) scope.
Fig. 8
Fig. 8 Received signal using heterodyne coherent detection. (a) Time-domain trace of probe signal, (b) Spectrum of probe signal with Brillouin gain (w/ SBS).
Fig. 9
Fig. 9 Measured BGS in a c-5MF for varying distances of 100~500 m along the c-5MF. Pump-probe mode pairs: (a) LP01x-LP01x, (b) LP01y-LP01y, (c) LP11ax-LP01x, (d) LP11ay-LP01y, (e) LP11bx-LP01x, (f) LP11by-LP01y, (g) LP21ax-LP01x, and (h) LP21ay-LP01y, (i) LP21bx-LP01x, and (j) LP21by-LP01y.
Fig. 10
Fig. 10 Measured Brillouin frequency shift (BFS) as a function of temperature and strain for LP01 mode. (a) Temperature sensitivity of BFS, and (b) Strain sensitivity of BFS.
Fig. 11
Fig. 11 Measured Brillouin frequency shift (BFS) as a function of temperature and strain for LP11 mode. (a) Temperature sensitivity of BFS, and (b) Strain sensitivity of BFS.

Tables (2)

Tables Icon

Table 1 Parameters for Custom-designed c-5MF [4, 6]

Tables Icon

Table 2 Characteristics of BGS at 100 m Fiber Length (Probe in LP01 Mode)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

t= sin 2 ( π λ B xy L )= 1cosϕ 2
Δλ= λ 2 B xy L
dϕ dT = 2π λ (L d B xy dT + B xy dL dT )
dλ dT = ΔλL λ d B xy dT = λ B xy d B xy dT
ν B = 2 n i V a λ 1 sin( θ 2 )
ν B = 2 n i V a λ 1
ν B,ij = V a ( n i λ 1 + n j λ 2 ) V a λ 1 ( n i + n j )
d ν B dT = 2 λ 1 ( V a d n i dT + n i d V a dT ) 2 n i λ 1 d V a dT
d ν B,ij dT = 1 λ 1 ( V a d n i dT + n i d V a dT )+ 1 λ 2 ( V a d n j dT + n j d V a dT ) n i + n j λ 1 d V a dT

Metrics