Abstract

We demonstrate the fabrication of long-period fiber gratings (LPFGs) coated with high index nano-film using the atomic layer deposition (ALD) technology. Higher index sensitivity can be achieved in the transition region of the coated LPFGs. For the LPFG coated by nano-film with a thickness of 100 nm, the high index sensitivity of 3000 nm/RIU and the expanded index sensitive range are obtained. The grating contrast of the over-coupled LPFGs and conventional LPFGs are measured and the over-coupled gratings are found to have a higher contrast in the transition region. The cladding modes transition is observed experimentally with increasing surrounding index using an infrared camera. The theoretical model of the hybrid modes in four-layer cylindrical waveguide is proposed for numerical simulation. The experimental results are well consistent with theoretical analysis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition

Mateusz Śmietana, Marcin Koba, Predrag Mikulic, and Wojtek J. Bock
Opt. Express 24(11) 11897-11904 (2016)

Refractive index sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology

Ying Zhao, Fufei Pang, Yanhua Dong, Jianxiang Wen, Zhenyi Chen, and Tingyun Wang
Opt. Express 21(22) 26136-26143 (2013)

References

  • View by:
  • |
  • |
  • |

  1. V. P. Minkovich, D. Monzón-Hernández, J. Villatoro, and G. Badenes, “Microstructured optical fiber coated with thin films for gas and chemical sensing,” Opt. Express 14(18), 8413–8418 (2006).
    [Crossref] [PubMed]
  2. D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nanocoated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
    [Crossref]
  3. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
    [Crossref]
  4. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
    [Crossref] [PubMed]
  5. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber gratings filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  6. H. K. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16(9), 1606–1612 (1998).
    [Crossref]
  7. G. Rego, “A review of refractometric sensors based on long period fibre gratings,” ScientificWorldJournal 2013, 913418 (2013).
    [Crossref] [PubMed]
  8. X. W. Shu and L. Zhang, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  9. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: Effects on the refractive-index sensitivity,” Opt. Lett. 30(19), 2536–2538 (2005).
    [Crossref] [PubMed]
  10. I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
    [Crossref] [PubMed]
  11. I. DelVillar, I. R. Matias, F. J. Arregui, and R. O. Claus, “ESA based in-fiber nanocavity for hydrogen peroxide detection,” IEEE Trans. NanoTechnol. 4(2), 187–193 (2005).
    [Crossref]
  12. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
    [Crossref] [PubMed]
  13. S. M. George, “Atomic layer deposition: An overview,” Chem. Rev. 110(1), 111–131 (2010).
    [Crossref] [PubMed]
  14. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum /water process,” Appl. Phys. Rev. 97(12), 121301 (2005).
    [Crossref]
  15. Y. Zhao, F. F. Pang, Y. H. Dong, J. X. Wen, Z. Y. Chen, and T. Y. Wang, “Refractive index Sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
    [Crossref] [PubMed]
  16. Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun. 282(12), 2446–2450 (2009).
    [Crossref]
  17. M. C. Kautzky, A. V. Demtchouk, Y. H. Chen, K. M. Brown, S. E. McKinlay, and J. H. Xue, “Atomic layer deposition Al2O3 films for permanent magnet isolation in TMR read heads,” IEEE Trans. Magn. 44(11), 3576–3579 (2008).
    [Crossref]
  18. C. Tsao, Optical fibre waveguide analysis (Oxford University Press, 1992).
  19. Y. P. Xu, Z. T. Gu, and J. B. Chen, “Long-period fiber grating thin film sensors based on cladding mode coupling,” Chin. Phys. Lett. 22(7), 1702–1705 (2005).
    [Crossref]
  20. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27(7), 857–863 (2009).
    [Crossref]
  21. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
    [Crossref] [PubMed]
  22. I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
    [Crossref] [PubMed]
  23. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]

2013 (3)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
[Crossref]

G. Rego, “A review of refractometric sensors based on long period fibre gratings,” ScientificWorldJournal 2013, 913418 (2013).
[Crossref] [PubMed]

Y. Zhao, F. F. Pang, Y. H. Dong, J. X. Wen, Z. Y. Chen, and T. Y. Wang, “Refractive index Sensitivity enhancement of optical fiber cladding mode by depositing nanofilm via ALD technology,” Opt. Express 21(22), 26136–26143 (2013).
[Crossref] [PubMed]

2010 (1)

S. M. George, “Atomic layer deposition: An overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

M. C. Kautzky, A. V. Demtchouk, Y. H. Chen, K. M. Brown, S. E. McKinlay, and J. H. Xue, “Atomic layer deposition Al2O3 films for permanent magnet isolation in TMR read heads,” IEEE Trans. Magn. 44(11), 3576–3579 (2008).
[Crossref]

2007 (1)

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nanocoated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

2006 (3)

2005 (5)

I. Del Villar, I. R. Matías, F. J. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
[Crossref] [PubMed]

I. DelVillar, I. R. Matias, F. J. Arregui, and R. O. Claus, “ESA based in-fiber nanocavity for hydrogen peroxide detection,” IEEE Trans. NanoTechnol. 4(2), 187–193 (2005).
[Crossref]

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum /water process,” Appl. Phys. Rev. 97(12), 121301 (2005).
[Crossref]

Y. P. Xu, Z. T. Gu, and J. B. Chen, “Long-period fiber grating thin film sensors based on cladding mode coupling,” Chin. Phys. Lett. 22(7), 1702–1705 (2005).
[Crossref]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: Effects on the refractive-index sensitivity,” Opt. Lett. 30(19), 2536–2538 (2005).
[Crossref] [PubMed]

2002 (2)

1998 (1)

1997 (2)

Albert, J.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
[Crossref]

Arregui, F. J.

Ashwell, G. J.

Badenes, G.

Brown, K. M.

M. C. Kautzky, A. V. Demtchouk, Y. H. Chen, K. M. Brown, S. E. McKinlay, and J. H. Xue, “Atomic layer deposition Al2O3 films for permanent magnet isolation in TMR read heads,” IEEE Trans. Magn. 44(11), 3576–3579 (2008).
[Crossref]

Bucholtz, F.

Campopiano, S.

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
[Crossref]

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nanocoated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

Chen, J. B.

Y. P. Xu, Z. T. Gu, and J. B. Chen, “Long-period fiber grating thin film sensors based on cladding mode coupling,” Chin. Phys. Lett. 22(7), 1702–1705 (2005).
[Crossref]

Chen, Y. H.

M. C. Kautzky, A. V. Demtchouk, Y. H. Chen, K. M. Brown, S. E. McKinlay, and J. H. Xue, “Atomic layer deposition Al2O3 films for permanent magnet isolation in TMR read heads,” IEEE Trans. Magn. 44(11), 3576–3579 (2008).
[Crossref]

Chen, Z. Y.

Chiang, K. S.

Claus, R. O.

I. DelVillar, I. R. Matias, F. J. Arregui, and R. O. Claus, “ESA based in-fiber nanocavity for hydrogen peroxide detection,” IEEE Trans. NanoTechnol. 4(2), 187–193 (2005).
[Crossref]

Contessa, L.

Cusano, A.

Cutolo, A.

Del Villar, I.

DelVillar, I.

I. DelVillar, I. R. Matias, F. J. Arregui, and R. O. Claus, “ESA based in-fiber nanocavity for hydrogen peroxide detection,” IEEE Trans. NanoTechnol. 4(2), 187–193 (2005).
[Crossref]

Demtchouk, A. V.

M. C. Kautzky, A. V. Demtchouk, Y. H. Chen, K. M. Brown, S. E. McKinlay, and J. H. Xue, “Atomic layer deposition Al2O3 films for permanent magnet isolation in TMR read heads,” IEEE Trans. Magn. 44(11), 3576–3579 (2008).
[Crossref]

Dong, Y. H.

Erdogan, T.

George, S. M.

S. M. George, “Atomic layer deposition: An overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

Giordano, M.

Gu, Z. T.

Y. P. Xu, Z. T. Gu, and J. B. Chen, “Long-period fiber grating thin film sensors based on cladding mode coupling,” Chin. Phys. Lett. 22(7), 1702–1705 (2005).
[Crossref]

Iadicicco, A.

James, S. W.

Jha, R.

Kautzky, M. C.

M. C. Kautzky, A. V. Demtchouk, Y. H. Chen, K. M. Brown, S. E. McKinlay, and J. H. Xue, “Atomic layer deposition Al2O3 films for permanent magnet isolation in TMR read heads,” IEEE Trans. Magn. 44(11), 3576–3579 (2008).
[Crossref]

Kersey, A. D.

Lalanne, P.

Lee, H. W.

Li, Q. S.

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun. 282(12), 2446–2450 (2009).
[Crossref]

Liu, Y.

Matias, I. R.

I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
[Crossref] [PubMed]

I. DelVillar, I. R. Matias, F. J. Arregui, and R. O. Claus, “ESA based in-fiber nanocavity for hydrogen peroxide detection,” IEEE Trans. NanoTechnol. 4(2), 187–193 (2005).
[Crossref]

Matías, I. R.

McKinlay, S. E.

M. C. Kautzky, A. V. Demtchouk, Y. H. Chen, K. M. Brown, S. E. McKinlay, and J. H. Xue, “Atomic layer deposition Al2O3 films for permanent magnet isolation in TMR read heads,” IEEE Trans. Magn. 44(11), 3576–3579 (2008).
[Crossref]

Mégret, P.

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nanocoated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

Minkovich, V. P.

Monzón-Hernández, D.

Paladino, D.

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nanocoated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

Pang, F. F.

Patrick, H. K.

Pilla, P.

Pruneri, V.

Puurunen, R. L.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum /water process,” Appl. Phys. Rev. 97(12), 121301 (2005).
[Crossref]

Qian, Y.

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun. 282(12), 2446–2450 (2009).
[Crossref]

Rao, Y. J.

Rees, N. D.

Rego, G.

G. Rego, “A review of refractometric sensors based on long period fibre gratings,” ScientificWorldJournal 2013, 913418 (2013).
[Crossref] [PubMed]

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
[Crossref]

Shu, X. W.

Sui, Z. Y.

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun. 282(12), 2446–2450 (2009).
[Crossref]

Tatam, R. P.

Villatoro, J.

Wang, H. Y.

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun. 282(12), 2446–2450 (2009).
[Crossref]

Wang, T. Y.

Wen, J. X.

Wu, G.

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun. 282(12), 2446–2450 (2009).
[Crossref]

Xu, Y. P.

Y. P. Xu, Z. T. Gu, and J. B. Chen, “Long-period fiber grating thin film sensors based on cladding mode coupling,” Chin. Phys. Lett. 22(7), 1702–1705 (2005).
[Crossref]

Xue, J. H.

M. C. Kautzky, A. V. Demtchouk, Y. H. Chen, K. M. Brown, S. E. McKinlay, and J. H. Xue, “Atomic layer deposition Al2O3 films for permanent magnet isolation in TMR read heads,” IEEE Trans. Magn. 44(11), 3576–3579 (2008).
[Crossref]

Yu, Y. S.

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun. 282(12), 2446–2450 (2009).
[Crossref]

Zhang, L.

Zhao, Y.

Zhu, T.

Appl. Phys. Rev. (1)

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum /water process,” Appl. Phys. Rev. 97(12), 121301 (2005).
[Crossref]

Chem. Rev. (1)

S. M. George, “Atomic layer deposition: An overview,” Chem. Rev. 110(1), 111–131 (2010).
[Crossref] [PubMed]

Chin. Phys. Lett. (1)

Y. P. Xu, Z. T. Gu, and J. B. Chen, “Long-period fiber grating thin film sensors based on cladding mode coupling,” Chin. Phys. Lett. 22(7), 1702–1705 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret, “Spectral behavior in nanocoated tilted fiber Bragg gratings: effect of thickness and external refractive index,” IEEE Photon. Technol. Lett. 19(24), 2051–2053 (2007).
[Crossref]

IEEE Trans. Magn. (1)

M. C. Kautzky, A. V. Demtchouk, Y. H. Chen, K. M. Brown, S. E. McKinlay, and J. H. Xue, “Atomic layer deposition Al2O3 films for permanent magnet isolation in TMR read heads,” IEEE Trans. Magn. 44(11), 3576–3579 (2008).
[Crossref]

IEEE Trans. NanoTechnol. (1)

I. DelVillar, I. R. Matias, F. J. Arregui, and R. O. Claus, “ESA based in-fiber nanocavity for hydrogen peroxide detection,” IEEE Trans. NanoTechnol. 4(2), 187–193 (2005).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (2)

Laser Photon. Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7(1), 83–108 (2013).
[Crossref]

Opt. Commun. (1)

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun. 282(12), 2446–2450 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

ScientificWorldJournal (1)

G. Rego, “A review of refractometric sensors based on long period fibre gratings,” ScientificWorldJournal 2013, 913418 (2013).
[Crossref] [PubMed]

Other (1)

C. Tsao, Optical fibre waveguide analysis (Oxford University Press, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The refractive index profile of the LPFG with the high index nano-film coating.
Fig. 2
Fig. 2 Effective refractive index of the first 13 cladding modes as a function of the SRI when the thickness of the nano-film is (a) 100 nm, (b) 200 nm and (c) 300nm. (d) The detail view for the two-step transition of cladding modes.
Fig. 3
Fig. 3 Response of the resonance wavelength to SRI for different nano-film thickness
Fig. 4
Fig. 4 (a) n2(r) times the radial electric field of the HE1,14, EH1,13, HE1,12 mode at SRI 1.33, (b) n2(r) times the radial electric field of the HE1,14 mode under a series of SRI values when the thickness of the nano-film coating is 100 nm.
Fig. 5
Fig. 5 Cross coupling coefficient for HE1,14 and EH1,13 modes as a function of the SRI when the nano-film are (a) 100 nm thickness in the conventional and OC-LPFGs, (b) 200 nm thickness in the conventional and OC-LPFGs
Fig. 6
Fig. 6 The grating contrast of the HE1,14, modes versus SRI for the conventional LPFGs and the OC-LPFGs when the thickness of the nano-film coating is (a) 100 nm, (b) 200 nm, (c) 300 nm
Fig. 7
Fig. 7 (a) is the SEM picture of the cross section of the coated LPFG and (b), (c), (d), and (e) are the magnification of the segments corresponding to the positions marked with red circles on (a).
Fig. 8
Fig. 8 The transmission spectra of (a) the conventional LPFG and (b) the OC-LPFG before and after nano-film coating.
Fig. 9
Fig. 9 The dependence of the resonance wavelength shift of the HE1,14, modes on SRI. (a) the conventional LPFG coated by nano-film with a thicknesses of 0, 100 nm, 200 nm and 300 nm, (b) the OC-LPFG coated by nano-film with a thicknesses of 0, 100 nm, 200 nm and 300 nm.
Fig. 10
Fig. 10 The transmission spectra of (a) the conventional bare LPFG and (b) the OC-LPFG coated with 100 nm nano-film at a SRI of 1.4524 and 1.461.
Fig. 11
Fig. 11 The dependence of the contrast variation of the HE1,14 mode on SRI. (a), (c) are for the conventional LPFG with 100 nm, 200 nm respectively, and (b), (d) are the OC-LPFG with 100 nm, 200 nm nano-film respectively.
Fig. 12
Fig. 12 The transmission spectra of the LPFG coated with 100 nm nano-film at four SRI values. (a) the near-field patterns corresponding to the attenuation dip at 1510 nm when the SRI was 1.33 and (b) the-field patterns corresponding to the attenuation dip at 1550 nm when the SRI was 1.461

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ 1i11 clco (z)= ω ε 0 n 1 2 σ(z) 2 0 2π dϕ 0 a 1 rdr( E r cl E r c o * + E ϕ cl E ϕ c o * )
T= cos 2 ( κ li11 clco L)

Metrics