Abstract

We propose an accurate and easy-to-use three-dimensional measurement method using a diffuser plate to analyze the scattering characteristics of optical films. The far-field radiation pattern of light scattered by the optical film is obtained from the illuminance pattern created on the diffuser plate by the light. A mathematical model and calibration methods were described, and the results were compared with those obtained by a direct measurement using a luminance meter. The new method gave very precise three-dimensional polarization-dependent scattering characteristics of scattering polarizer films, and it can play an effective role in developing high performance polarization-selective screens for 3D display applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-Definition Imaging System Based on Spatial Light Modulators with Light-Scattering Mode

Hiroshi Kikuchi, Takanori Fujii, Masahiro Kawakita, Yoshiyuki Hirano, Hideo Fujikake, Fumio Sato, and Kuniharu Takizawa
Appl. Opt. 43(1) 132-142 (2004)

Optimal projector configuration design for 300-Mpixel multi-projection 3D display

Jin-Ho Lee, Juyong Park, Dongkyung Nam, Seo Young Choi, Du-Sik Park, and Chang Yeong Kim
Opt. Express 21(22) 26820-26835 (2013)

Three-dimensional display technologies

Jason Geng
Adv. Opt. Photon. 5(4) 456-535 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H. Choi, J. Hahn, J. Park, H. Kim, S. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50(34), H87–H115 (2011).
  2. S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
    [Crossref] [PubMed]
  3. N. Ranieri, S. Heinzle, Q. Smithwick, D. Reetz, L. S. Smoot, W. Matusik, and M. Gross, “Multi-layered automultiscopic displays,” in Proceedings of Pacific Graphics 201231(7), 2135–2143 (2012).
  4. Y. Kim, K. Hong, J. Yeom, J. Hong, J. H. Jung, Y. W. Lee, J. H. Park, and B. Lee, “A frontal projection-type three-dimensional display,” Opt. Express 20(18), 20130–20138 (2012).
    [Crossref] [PubMed]
  5. B. Song and S. W. Min, “2D/3D convertible integral imaging display using point light source array instrumented by polarization selective scattering film,” J. Opt. Soc. Korea 17(2), 162–167 (2013).
    [Crossref]
  6. S. G. Park, J. Y. Hong, C. K. Lee, M. Miranda, Y. Kim, and B. Lee, “Depth-expression characteristics of multi-projection 3D display systems [invited],” Appl. Opt. 53(27), G198–G208 (2014).
    [Crossref] [PubMed]
  7. S. G. Park, J. H. Kim, and S. W. Min, “Polarization distributed depth map for depth-fused three-dimensional display,” Opt. Express 19(5), 4316–4323 (2011).
    [Crossref] [PubMed]
  8. S. G. Park, J. H. Jung, Y. Jeong, and B. Lee, “Depth-fused display with improved viewing characteristics,” Opt. Express 21(23), 28758–28770 (2013).
    [Crossref] [PubMed]
  9. S. Suyama, H. Sonobe, T. Soumiya, A. Tsunakawa, H. Yamamoto, and H. Kuribayashi, “Edge-based depth-fused 3D display,” in Digital Holography and 3D Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), paper DM2A.3.
  10. X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]
  11. J. Seo and T. Kim, “Double-layer projection display system using scattering polarizer film,” Jpn. J. Appl. Phys. 47(3), 1602–1605 (2008).
    [Crossref]
  12. C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45-10.6 µm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32(28), 5462–5474 (1993).
    [Crossref] [PubMed]
  13. S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing thin-film coatings,” Appl. Opt. 50(9), C164–C171 (2011).
    [Crossref] [PubMed]
  14. S. Schröder, S. Gliech, and A. Duparré, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44(29), 6093–6107 (2005).
    [Crossref] [PubMed]
  15. I. Moreno and C. Sun, “Three-dimensional measurement of light-emitting diode radiation pattern: a rapid estimation,” Meas. Sci. Technol. 20(7), 075306 (2009).
    [Crossref]
  16. M. Lequime, M. Zerrad, C. Deumie, and C. Amra, “A goniometric light scattering instrument with high-resolution imaging,” Opt. Commun. 282(7), 1265–1273 (2009).
    [Crossref]
  17. M. Zerrad and M. Lequime, “Instantaneous spatially resolved acquisition of polarimetric and angular scattering properties in optical coatings,” Appl. Opt. 50(9), C217–C221 (2011).
    [Crossref] [PubMed]
  18. M. Berner, M. Sämann, A. Garamoun, and M. B. Schubert, “Quantification of optical deflection by laser-structured ZnO:Al,” IEEE J. Photovolt. 3(1), 590–592 (2013).
    [Crossref]
  19. M. Jošt, J. Krč, and M. Topič, “Camera-based angular resolved spectroscopy system for spatial measurements of scattered light,” Appl. Opt. 53(21), 4795–4803 (2014).
    [Crossref] [PubMed]
  20. N. Asada, A. Amano, and M. Baba, “Photometric calibration of zoom lens systems,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 186–190.
    [Crossref]

2014 (3)

2013 (3)

2012 (1)

2011 (5)

2009 (2)

I. Moreno and C. Sun, “Three-dimensional measurement of light-emitting diode radiation pattern: a rapid estimation,” Meas. Sci. Technol. 20(7), 075306 (2009).
[Crossref]

M. Lequime, M. Zerrad, C. Deumie, and C. Amra, “A goniometric light scattering instrument with high-resolution imaging,” Opt. Commun. 282(7), 1265–1273 (2009).
[Crossref]

2008 (1)

J. Seo and T. Kim, “Double-layer projection display system using scattering polarizer film,” Jpn. J. Appl. Phys. 47(3), 1602–1605 (2008).
[Crossref]

2005 (1)

1993 (1)

Akeley, K.

Amano, A.

N. Asada, A. Amano, and M. Baba, “Photometric calibration of zoom lens systems,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 186–190.
[Crossref]

Amra, C.

M. Lequime, M. Zerrad, C. Deumie, and C. Amra, “A goniometric light scattering instrument with high-resolution imaging,” Opt. Commun. 282(7), 1265–1273 (2009).
[Crossref]

C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45-10.6 µm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32(28), 5462–5474 (1993).
[Crossref] [PubMed]

Asada, N.

N. Asada, A. Amano, and M. Baba, “Photometric calibration of zoom lens systems,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 186–190.
[Crossref]

Baba, M.

N. Asada, A. Amano, and M. Baba, “Photometric calibration of zoom lens systems,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 186–190.
[Crossref]

Banks, M. S.

Berner, M.

M. Berner, M. Sämann, A. Garamoun, and M. B. Schubert, “Quantification of optical deflection by laser-structured ZnO:Al,” IEEE J. Photovolt. 3(1), 590–592 (2013).
[Crossref]

Blaschke, H.

Chen, N.

Choi, H.

Deumie, C.

M. Lequime, M. Zerrad, C. Deumie, and C. Amra, “A goniometric light scattering instrument with high-resolution imaging,” Opt. Commun. 282(7), 1265–1273 (2009).
[Crossref]

Duparré, A.

Garamoun, A.

M. Berner, M. Sämann, A. Garamoun, and M. B. Schubert, “Quantification of optical deflection by laser-structured ZnO:Al,” IEEE J. Photovolt. 3(1), 590–592 (2013).
[Crossref]

Gliech, S.

Hahn, J.

Herffurth, T.

Hong, J.

Hong, J. Y.

Hong, K.

Hu, X.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Hua, H.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Jeong, Y.

Jošt, M.

Jung, J. H.

Kim, H.

Kim, J. H.

Kim, T.

J. Seo and T. Kim, “Double-layer projection display system using scattering polarizer film,” Jpn. J. Appl. Phys. 47(3), 1602–1605 (2008).
[Crossref]

Kim, Y.

Krc, J.

Lee, B.

Lee, C. K.

Lee, Y. W.

Lequime, M.

M. Zerrad and M. Lequime, “Instantaneous spatially resolved acquisition of polarimetric and angular scattering properties in optical coatings,” Appl. Opt. 50(9), C217–C221 (2011).
[Crossref] [PubMed]

M. Lequime, M. Zerrad, C. Deumie, and C. Amra, “A goniometric light scattering instrument with high-resolution imaging,” Opt. Commun. 282(7), 1265–1273 (2009).
[Crossref]

Min, S.

Min, S. W.

Miranda, M.

Moreno, I.

I. Moreno and C. Sun, “Three-dimensional measurement of light-emitting diode radiation pattern: a rapid estimation,” Meas. Sci. Technol. 20(7), 075306 (2009).
[Crossref]

Park, J.

Park, J. H.

Park, S. G.

Ravikumar, S.

Roche, P.

Sämann, M.

M. Berner, M. Sämann, A. Garamoun, and M. B. Schubert, “Quantification of optical deflection by laser-structured ZnO:Al,” IEEE J. Photovolt. 3(1), 590–592 (2013).
[Crossref]

Schröder, S.

Schubert, M. B.

M. Berner, M. Sämann, A. Garamoun, and M. B. Schubert, “Quantification of optical deflection by laser-structured ZnO:Al,” IEEE J. Photovolt. 3(1), 590–592 (2013).
[Crossref]

Seo, J.

J. Seo and T. Kim, “Double-layer projection display system using scattering polarizer film,” Jpn. J. Appl. Phys. 47(3), 1602–1605 (2008).
[Crossref]

Song, B.

Sun, C.

I. Moreno and C. Sun, “Three-dimensional measurement of light-emitting diode radiation pattern: a rapid estimation,” Meas. Sci. Technol. 20(7), 075306 (2009).
[Crossref]

Topic, M.

Torricini, D.

Yeom, J.

Zerrad, M.

M. Zerrad and M. Lequime, “Instantaneous spatially resolved acquisition of polarimetric and angular scattering properties in optical coatings,” Appl. Opt. 50(9), C217–C221 (2011).
[Crossref] [PubMed]

M. Lequime, M. Zerrad, C. Deumie, and C. Amra, “A goniometric light scattering instrument with high-resolution imaging,” Opt. Commun. 282(7), 1265–1273 (2009).
[Crossref]

Appl. Opt. (7)

J. Hong, Y. Kim, H. Choi, J. Hahn, J. Park, H. Kim, S. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50(34), H87–H115 (2011).

S. G. Park, J. Y. Hong, C. K. Lee, M. Miranda, Y. Kim, and B. Lee, “Depth-expression characteristics of multi-projection 3D display systems [invited],” Appl. Opt. 53(27), G198–G208 (2014).
[Crossref] [PubMed]

C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45-10.6 µm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32(28), 5462–5474 (1993).
[Crossref] [PubMed]

S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing thin-film coatings,” Appl. Opt. 50(9), C164–C171 (2011).
[Crossref] [PubMed]

S. Schröder, S. Gliech, and A. Duparré, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44(29), 6093–6107 (2005).
[Crossref] [PubMed]

M. Zerrad and M. Lequime, “Instantaneous spatially resolved acquisition of polarimetric and angular scattering properties in optical coatings,” Appl. Opt. 50(9), C217–C221 (2011).
[Crossref] [PubMed]

M. Jošt, J. Krč, and M. Topič, “Camera-based angular resolved spectroscopy system for spatial measurements of scattered light,” Appl. Opt. 53(21), 4795–4803 (2014).
[Crossref] [PubMed]

IEEE J. Photovolt. (1)

M. Berner, M. Sämann, A. Garamoun, and M. B. Schubert, “Quantification of optical deflection by laser-structured ZnO:Al,” IEEE J. Photovolt. 3(1), 590–592 (2013).
[Crossref]

J. Disp. Technol. (1)

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

J. Opt. Soc. Korea (1)

Jpn. J. Appl. Phys. (1)

J. Seo and T. Kim, “Double-layer projection display system using scattering polarizer film,” Jpn. J. Appl. Phys. 47(3), 1602–1605 (2008).
[Crossref]

Meas. Sci. Technol. (1)

I. Moreno and C. Sun, “Three-dimensional measurement of light-emitting diode radiation pattern: a rapid estimation,” Meas. Sci. Technol. 20(7), 075306 (2009).
[Crossref]

Opt. Commun. (1)

M. Lequime, M. Zerrad, C. Deumie, and C. Amra, “A goniometric light scattering instrument with high-resolution imaging,” Opt. Commun. 282(7), 1265–1273 (2009).
[Crossref]

Opt. Express (4)

Other (3)

S. Suyama, H. Sonobe, T. Soumiya, A. Tsunakawa, H. Yamamoto, and H. Kuribayashi, “Edge-based depth-fused 3D display,” in Digital Holography and 3D Imaging, OSA Technical Digest (online) (Optical Society of America, 2013), paper DM2A.3.

N. Ranieri, S. Heinzle, Q. Smithwick, D. Reetz, L. S. Smoot, W. Matusik, and M. Gross, “Multi-layered automultiscopic displays,” in Proceedings of Pacific Graphics 201231(7), 2135–2143 (2012).

N. Asada, A. Amano, and M. Baba, “Photometric calibration of zoom lens systems,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 1996), pp. 186–190.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of diffuser-based 3D measurement of the optical scattering characteristics of polarization-selective screens.
Fig. 2
Fig. 2 Geometrical relationship between the luminance emitted from the light spot on the screen and the pixel brightness of the CCD-captured image. The surface element Δ S ij on the diffuser surface corresponds to the pixel (i, j) of the image.
Fig. 3
Fig. 3 Experimental setup. Inset shows the image of the ruler placed in front of the diffuser to measure the pixel dimension.
Fig. 4
Fig. 4 (a) Schematic of the experimental setup to measure the diffuser transmittance vs. the incidence angle of light. Inset is the photograph showing the setup. (b) Experimental results. Dotted lines are the relative brightness of the light spot on diffuser, and solid lines are transmittance obtained by multiplying the inverse of the cosine of incidence angle.
Fig. 5
Fig. 5 (a) Captured images shown in JPG format for printout, (b) pixel brightness, and (c) angular distribution of luminance. Top figures for horizontal polarization, and bottom figures for vertical polarization. ( d cam =10 mm, d s =3 mm, R=80 mm, D=500 mm)
Fig. 6
Fig. 6 Radiation patterns for scattered light with (a) horizontal (parallel to the incident light) polarization state and (b) vertical (90-degree twisted from the incident light) polarization state.
Fig. 7
Fig. 7 Schematic of the imaginary luminance meter measurement and definition for the angles.
Fig. 8
Fig. 8 Luminous fluxes measured by a luminance meter ( × ) and calculated using the radiation pattern (●) for (a) horizontal (parallel to the incident light) polarization state and (b) vertical (90-degree twisted from the incident light) polarization state. The solid and dashed lines are the luminance and image brightness, respectively, (in arbitrary unit) shown for a reference.

Tables (2)

Tables Icon

Table 1 Parameters used for the CCD conversion factor.

Tables Icon

Table 2 Luminous fluxes directly measured using a luminance meter and calculated using measured scattering characteristics.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I ij img = K cam 1 L ij Δ S ij Δ Ω ij cam
Δ Ω ij cam = A cam cos 3 ψ ij D 2
L ij = K cam D 2 A cam Δ S ij cos 3 ψ ij I ij img .
π L ij Δ S ij =[ L S ( θ ij , ϕ ij ) A s Δ Ω ij dif ] T ij
Δ Ω ij dif = Δ S ij cos 3 θ ij R 2
L S ( θ ij , ϕ ij )= π R 2 A s cos 3 θ ij L ij T ij .
L S ( θ ij , ϕ ij )= K cam π R 2 D 2 A s A cam Δ S ij [ 1 cos 3 θ ij cos 3 ψ ij 1 T ij ] I ij img
T ij = cos 2 ϕ ij T ( θ ij )+ sin 2 ϕ ij T ( θ ij ).
i,j N pxl ccd ( K cam I ij img ) = i,j N pxl ccd ( L ij Δ S ij Δ Ω ij cam ) .
i,j N pxl ccd ( K cam I ij img ) = K cam i,j N pxl ccd ( I ij img ) = K cam N pxl ccd I ij img
i,j N pxl ccd ( L ij Δ S ij Δ Ω ij cam ) =π L lum A cam
K cam =π A cam N pxl ccd L lum I ij img .
L S ( θ,ϕ )= π A s ΔΦ( θ,ϕ ) ΔΩ( θ,ϕ ) .
ΔΦ( θ,ϕ )= i,j Δ Φ ij dif = i,j K cam I ij img T anal T uvir T ij Δ Ω ij cam
ΔΩ( θ,ϕ )= i,j Δ Ω ij dif .
Δϑ= cos 1 ( cos θ lum cosθ+sin θ lum sinθcosϕ )

Metrics