Abstract

We demonstrate that nanocrystalline Al-doped zinc oxide (n-AZO) thin film used as an electron-extraction layer can significantly enhance the performance of inverted polymer solar cells based on the bulk heterojunction of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) and [6,6]-phenyl C71-butyric acid methyl ester (PC70BM). A synergistic study with both simulation and experiment on n-AZO was carried out to offer a rational guidance for the efficiency improvement. As a result, An n-AZO film with an average grain size of 13 to 22 nm was prepared by a sol-gel spin-coating method, and a minimum resistivity of 2.1 × 10−3 Ω·cm was obtained for an Al-doping concentration of 5.83 at.%. When an n-AZO film with a 5.83 at.% Al concentration was inserted between the ITO electrode and the active layer (PCDTBT:PC70BM), the power conversion efficiency increased from 3.7 to 5.6%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inverted polymer solar cells with amorphous indium zinc oxide as the electron-collecting electrode

Hyeunseok Cheun, Jungbae Kim, Yinhua Zhou, Yunnan Fang, Amir Dindar, Jaewon Shim, Canek Fuentes-Hernandez, Kenneth H. Sandhage, and Bernard Kippelen
Opt. Express 18(S4) A506-A512 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Brabec, V. Dyakonov, J. Parisi, and N. S. Sariciftci, Organic Photovoltaics: Concepts and Realization (Springer, 2003).
  2. C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, “Printing highly efficient organic solar cells,” Nano Lett. 8(9), 2806–2813 (2008).
    [Crossref] [PubMed]
  3. Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
    [Crossref]
  4. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
    [Crossref]
  5. J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
    [Crossref] [PubMed]
  6. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
    [Crossref] [PubMed]
  7. Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
    [Crossref]
  8. P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
    [Crossref]
  9. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
    [Crossref]
  10. B. R. Aïch, J. Lu, S. Beaupré, M. Leclerc, and Y. Tao, “Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells,” Org. Electron. 13(9), 1736–1741 (2012).
    [Crossref]
  11. T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, “Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer,” Org. Electron. 12(9), 1539–1543 (2011).
    [Crossref]
  12. H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, and C. J. Brabec, “Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2194–2199 (2011).
    [Crossref]
  13. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88(7), 073508 (2006).
    [Crossref]
  14. P. de Bruyn, D. J. D. Moet, and P. W. M. Blom, “A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer,” Org. Electron. 11(8), 1419–1422 (2010).
    [Crossref]
  15. E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, “Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency,” Org. Electron. 13(5), 744–749 (2012).
    [Crossref]
  16. I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
    [Crossref]
  17. A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, “Interface limited charge extraction and recombination in organic photovoltaics,” Energy Environ. Sci. 7(7), 2227–2231 (2014).
    [Crossref]
  18. J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
    [Crossref]
  19. T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
    [Crossref]
  20. C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Bimolecular recombination losses in polythiophene: Fullerene solar cells,” Phys. Rev. B 78(11), 113201 (2008).
    [Crossref]
  21. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer,” Adv. Mater. 23(14), 1679–1683 (2011).
    [Crossref] [PubMed]
  22. S. K. Hau, H.-L. Yip, and A. K. Y. Jen, “A review on the development of the inverted polymer solar cell architecture,” Polym. Rev. (Phila. Pa.) 50(4), 474–510 (2010).
    [Crossref]
  23. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89(14), 143517 (2006).
    [Crossref]
  24. C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, “Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer,” Appl. Phys. Lett. 94(11), 113302 (2009).
    [Crossref]
  25. C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, “Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer,” J. Am. Chem. Soc. 132(13), 4887–4893 (2010).
    [Crossref] [PubMed]
  26. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
    [Crossref] [PubMed]
  27. Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
    [Crossref]
  28. H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
    [Crossref]
  29. C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
    [Crossref]
  30. S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
    [Crossref]
  31. P. K. Nayak, J. Jang, C. Lee, and Y. Hong, “Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors,” Appl. Phys. Lett. 95(19), 193503 (2009).
    [Crossref]
  32. K.-S. Shin, K.-H. Lee, H. H. Lee, D. Choi, and S.-W. Kim, “Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution,” J. Phys. Chem. C 114(37), 15782–15785 (2010).
    [Crossref]
  33. H. Karaagac, E. Yengel, and M. Saif Islam, “Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol–gel method,” J. Alloys Compd. 521, 155–162 (2012).
    [Crossref]
  34. S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
    [Crossref] [PubMed]
  35. Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method,” Superlattices Microstruct. 49(6), 644–653 (2011).
    [Crossref]
  36. Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, and Y. R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method,” Mater. Res. Bull. 41(2), 354–358 (2006).
    [Crossref]
  37. B. D. Cullity, Elements of X-ray diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978).
  38. Y. Caglar, M. Caglar, and S. Ilican, “Microstructural, optical and electrical studies on sol gel derived ZnO and ZnO:Al films,” Curr. Appl. Phys. 12(3), 963–968 (2012).
    [Crossref]
  39. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
    [Crossref] [PubMed]
  40. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
    [Crossref] [PubMed]
  41. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref] [PubMed]
  42. P. Palacios, K. Sánchez, and P. Wahnón, “Ab-initio valence band spectra of Al, In doped ZnO,” Thin Solid Films 517(7), 2448–2451 (2009).
    [Crossref]

2015 (3)

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
[Crossref] [PubMed]

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

2014 (2)

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, “Interface limited charge extraction and recombination in organic photovoltaics,” Energy Environ. Sci. 7(7), 2227–2231 (2014).
[Crossref]

2013 (2)

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

2012 (8)

E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, “Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency,” Org. Electron. 13(5), 744–749 (2012).
[Crossref]

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

B. R. Aïch, J. Lu, S. Beaupré, M. Leclerc, and Y. Tao, “Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells,” Org. Electron. 13(9), 1736–1741 (2012).
[Crossref]

H. Karaagac, E. Yengel, and M. Saif Islam, “Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol–gel method,” J. Alloys Compd. 521, 155–162 (2012).
[Crossref]

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Y. Caglar, M. Caglar, and S. Ilican, “Microstructural, optical and electrical studies on sol gel derived ZnO and ZnO:Al films,” Curr. Appl. Phys. 12(3), 963–968 (2012).
[Crossref]

2011 (6)

Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method,” Superlattices Microstruct. 49(6), 644–653 (2011).
[Crossref]

Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer,” Adv. Mater. 23(14), 1679–1683 (2011).
[Crossref] [PubMed]

T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, “Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer,” Org. Electron. 12(9), 1539–1543 (2011).
[Crossref]

H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, and C. J. Brabec, “Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2194–2199 (2011).
[Crossref]

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

2010 (4)

P. de Bruyn, D. J. D. Moet, and P. W. M. Blom, “A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer,” Org. Electron. 11(8), 1419–1422 (2010).
[Crossref]

S. K. Hau, H.-L. Yip, and A. K. Y. Jen, “A review on the development of the inverted polymer solar cell architecture,” Polym. Rev. (Phila. Pa.) 50(4), 474–510 (2010).
[Crossref]

C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, “Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer,” J. Am. Chem. Soc. 132(13), 4887–4893 (2010).
[Crossref] [PubMed]

K.-S. Shin, K.-H. Lee, H. H. Lee, D. Choi, and S.-W. Kim, “Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution,” J. Phys. Chem. C 114(37), 15782–15785 (2010).
[Crossref]

2009 (4)

P. Palacios, K. Sánchez, and P. Wahnón, “Ab-initio valence band spectra of Al, In doped ZnO,” Thin Solid Films 517(7), 2448–2451 (2009).
[Crossref]

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, “Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer,” Appl. Phys. Lett. 94(11), 113302 (2009).
[Crossref]

P. K. Nayak, J. Jang, C. Lee, and Y. Hong, “Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors,” Appl. Phys. Lett. 95(19), 193503 (2009).
[Crossref]

2008 (5)

H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Bimolecular recombination losses in polythiophene: Fullerene solar cells,” Phys. Rev. B 78(11), 113201 (2008).
[Crossref]

C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, “Printing highly efficient organic solar cells,” Nano Lett. 8(9), 2806–2813 (2008).
[Crossref] [PubMed]

2006 (3)

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88(7), 073508 (2006).
[Crossref]

M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89(14), 143517 (2006).
[Crossref]

Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, and Y. R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method,” Mater. Res. Bull. 41(2), 354–358 (2006).
[Crossref]

1996 (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

1994 (1)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[Crossref] [PubMed]

1993 (1)

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

Ade, H.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Agostinelli, T.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Aïch, B. R.

B. R. Aïch, J. Lu, S. Beaupré, M. Leclerc, and Y. Tao, “Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells,” Org. Electron. 13(9), 1736–1741 (2012).
[Crossref]

Andriessen, R.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Anthopoulos, T. D.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Armstrong, N. R.

E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, “Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency,” Org. Electron. 13(5), 744–749 (2012).
[Crossref]

Bai, S.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Baik, H. K.

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

Ballantyne, A. M.

C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Bimolecular recombination losses in polythiophene: Fullerene solar cells,” Phys. Rev. B 78(11), 113201 (2008).
[Crossref]

Bao, C.

Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method,” Superlattices Microstruct. 49(6), 644–653 (2011).
[Crossref]

Beaupré, S.

B. R. Aïch, J. Lu, S. Beaupré, M. Leclerc, and Y. Tao, “Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells,” Org. Electron. 13(9), 1736–1741 (2012).
[Crossref]

Blöchl, P. E.

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[Crossref] [PubMed]

Blom, P. W. M.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

P. de Bruyn, D. J. D. Moet, and P. W. M. Blom, “A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer,” Org. Electron. 11(8), 1419–1422 (2010).
[Crossref]

Brabec, C. J.

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, “Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer,” Org. Electron. 12(9), 1539–1543 (2011).
[Crossref]

H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, and C. J. Brabec, “Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2194–2199 (2011).
[Crossref]

C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, “Printing highly efficient organic solar cells,” Nano Lett. 8(9), 2806–2813 (2008).
[Crossref] [PubMed]

Bradley, D. D. C.

C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Bimolecular recombination losses in polythiophene: Fullerene solar cells,” Phys. Rev. B 78(11), 113201 (2008).
[Crossref]

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Caglar, M.

Y. Caglar, M. Caglar, and S. Ilican, “Microstructural, optical and electrical studies on sol gel derived ZnO and ZnO:Al films,” Curr. Appl. Phys. 12(3), 963–968 (2012).
[Crossref]

Caglar, Y.

Y. Caglar, M. Caglar, and S. Ilican, “Microstructural, optical and electrical studies on sol gel derived ZnO and ZnO:Al films,” Curr. Appl. Phys. 12(3), 963–968 (2012).
[Crossref]

Campoy-Quiles, M.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Cao, Y.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

Chen, C.-C.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

Chen, C.-H.

C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, “Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer,” J. Am. Chem. Soc. 132(13), 4887–4893 (2010).
[Crossref] [PubMed]

Chen, J.-D.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
[Crossref] [PubMed]

Chen, L.-M.

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

Chen, W.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Cheng, Y.-J.

C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, “Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer,” J. Am. Chem. Soc. 132(13), 4887–4893 (2010).
[Crossref] [PubMed]

Cho, J. H.

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

Choi, D.

K.-S. Shin, K.-H. Lee, H. H. Lee, D. Choi, and S.-W. Kim, “Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution,” J. Phys. Chem. C 114(37), 15782–15785 (2010).
[Crossref]

Choulis, S. A.

C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, “Printing highly efficient organic solar cells,” Nano Lett. 8(9), 2806–2813 (2008).
[Crossref] [PubMed]

Chu, C.-W.

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88(7), 073508 (2006).
[Crossref]

Clare, D.

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

Cui, C.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
[Crossref] [PubMed]

Cui, R.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Dalgliesh, R. M.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

de Bruyn, P.

P. de Bruyn, D. J. D. Moet, and P. W. M. Blom, “A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer,” Org. Electron. 11(8), 1419–1422 (2010).
[Crossref]

Deng, H.

Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, and Y. R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method,” Mater. Res. Bull. 41(2), 354–358 (2006).
[Crossref]

Donald, A. M.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Dong, W.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Dou, L.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

Dubosc, M.

C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, “Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer,” J. Am. Chem. Soc. 132(13), 4887–4893 (2010).
[Crossref] [PubMed]

Dunbar, A. D. F.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Durrant, J. R.

C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Bimolecular recombination losses in polythiophene: Fullerene solar cells,” Phys. Rev. B 78(11), 113201 (2008).
[Crossref]

Elmalem, E.

A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, “Interface limited charge extraction and recombination in organic photovoltaics,” Energy Environ. Sci. 7(7), 2227–2231 (2014).
[Crossref]

Emery, K.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Etchegoin, P. G.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Fan, C.-C.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Fan, L.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Ferenczi, T.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Forberich, K.

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

Friend, R. H.

A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, “Interface limited charge extraction and recombination in organic photovoltaics,” Energy Environ. Sci. 7(7), 2227–2231 (2014).
[Crossref]

Galagan, Y.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Gao, Y.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Ginley, D. S.

M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89(14), 143517 (2006).
[Crossref]

Gomez, E. D.

C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, “Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer,” Appl. Phys. Lett. 94(11), 113302 (2009).
[Crossref]

Greenham, N. C.

A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, “Interface limited charge extraction and recombination in organic photovoltaics,” Energy Environ. Sci. 7(7), 2227–2231 (2014).
[Crossref]

Guo, Q. H.

Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, and Y. R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method,” Mater. Res. Bull. 41(2), 354–358 (2006).
[Crossref]

Guo, X.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Hafner, J.

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

Halik, M.

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

Han, X.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Hancox, I.

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

Hau, S. K.

S. K. Hau, H.-L. Yip, and A. K. Y. Jen, “A review on the development of the inverted polymer solar cell architecture,” Polym. Rev. (Phila. Pa.) 50(4), 474–510 (2010).
[Crossref]

He, S.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

He, Y.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

He, Z.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

Heeger, A. J.

Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer,” Adv. Mater. 23(14), 1679–1683 (2011).
[Crossref] [PubMed]

Hong, Y.

P. K. Nayak, J. Jang, C. Lee, and Y. Hong, “Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors,” Appl. Phys. Lett. 95(19), 193503 (2009).
[Crossref]

Hopkinson, P. E.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Hoth, C. N.

C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, “Printing highly efficient organic solar cells,” Nano Lett. 8(9), 2806–2813 (2008).
[Crossref] [PubMed]

Hou, J.

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

Hou, S.

Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method,” Superlattices Microstruct. 49(6), 644–653 (2011).
[Crossref]

Hsieh, C.-H.

C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, “Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer,” J. Am. Chem. Soc. 132(13), 4887–4893 (2010).
[Crossref] [PubMed]

Hsu, C.-S.

C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, “Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer,” J. Am. Chem. Soc. 132(13), 4887–4893 (2010).
[Crossref] [PubMed]

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

Hu, H.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Hu, X.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Huang, C.-H.

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

Huck, W. T. S.

A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, “Interface limited charge extraction and recombination in organic photovoltaics,” Energy Environ. Sci. 7(7), 2227–2231 (2014).
[Crossref]

Ilican, S.

Y. Caglar, M. Caglar, and S. Ilican, “Microstructural, optical and electrical studies on sol gel derived ZnO and ZnO:Al films,” Curr. Appl. Phys. 12(3), 963–968 (2012).
[Crossref]

Iraqi, A.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Jang, J.

P. K. Nayak, J. Jang, C. Lee, and Y. Hong, “Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors,” Appl. Phys. Lett. 95(19), 193503 (2009).
[Crossref]

Jen, A. K. Y.

S. K. Hau, H.-L. Yip, and A. K. Y. Jen, “A review on the development of the inverted polymer solar cell architecture,” Polym. Rev. (Phila. Pa.) 50(4), 474–510 (2010).
[Crossref]

Jiang, K.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Jin, Y.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Jones, R. A. L.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Jones, T. S.

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

Kahn, A.

E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, “Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency,” Org. Electron. 13(5), 744–749 (2012).
[Crossref]

Kang, M. S.

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

Karaagac, H.

H. Karaagac, E. Yengel, and M. Saif Islam, “Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol–gel method,” J. Alloys Compd. 521, 155–162 (2012).
[Crossref]

Kim, B. J.

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

Kim, C. S.

C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, “Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer,” Appl. Phys. Lett. 94(11), 113302 (2009).
[Crossref]

Kim, J. B.

C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, “Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer,” Appl. Phys. Lett. 94(11), 113302 (2009).
[Crossref]

Kim, K.

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

Kim, S.-W.

K.-S. Shin, K.-H. Lee, H. H. Lee, D. Choi, and S.-W. Kim, “Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution,” J. Phys. Chem. C 114(37), 15782–15785 (2010).
[Crossref]

Kim, Y.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Kim, Y. S.

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

Kinane, C.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Kong, X.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Kopidakis, N.

M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89(14), 143517 (2006).
[Crossref]

Krantz, J.

T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, “Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer,” Org. Electron. 12(9), 1539–1543 (2011).
[Crossref]

H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, and C. J. Brabec, “Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2194–2199 (2011).
[Crossref]

Kresse, G.

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

Kroon, J. M.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Kumar, A.

A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, “Interface limited charge extraction and recombination in organic photovoltaics,” Energy Environ. Sci. 7(7), 2227–2231 (2014).
[Crossref]

Lakhwani, G.

A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, “Interface limited charge extraction and recombination in organic photovoltaics,” Energy Environ. Sci. 7(7), 2227–2231 (2014).
[Crossref]

Leclerc, M.

B. R. Aïch, J. Lu, S. Beaupré, M. Leclerc, and Y. Tao, “Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells,” Org. Electron. 13(9), 1736–1741 (2012).
[Crossref]

Lee, C.

P. K. Nayak, J. Jang, C. Lee, and Y. Hong, “Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors,” Appl. Phys. Lett. 95(19), 193503 (2009).
[Crossref]

Lee, H. H.

K.-S. Shin, K.-H. Lee, H. H. Lee, D. Choi, and S.-W. Kim, “Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution,” J. Phys. Chem. C 114(37), 15782–15785 (2010).
[Crossref]

Lee, K.-H.

K.-S. Shin, K.-H. Lee, H. H. Lee, D. Choi, and S.-W. Kim, “Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution,” J. Phys. Chem. C 114(37), 15782–15785 (2010).
[Crossref]

Lee, S. S.

C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, “Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer,” Appl. Phys. Lett. 94(11), 113302 (2009).
[Crossref]

Lee, T. I.

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

Li, C.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
[Crossref] [PubMed]

Li, G.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88(7), 073508 (2006).
[Crossref]

Li, N.

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

Li, P.-J.

C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, “Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer,” J. Am. Chem. Soc. 132(13), 4887–4893 (2010).
[Crossref] [PubMed]

Li, Y.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
[Crossref] [PubMed]

Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, and Y. R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method,” Mater. Res. Bull. 41(2), 354–358 (2006).
[Crossref]

Li, Y. R.

Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, and Y. R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method,” Mater. Res. Bull. 41(2), 354–358 (2006).
[Crossref]

Li, Y.-Q.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
[Crossref] [PubMed]

Li, Z.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Liang, R.-M.

C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, “Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer,” J. Am. Chem. Soc. 132(13), 4887–4893 (2010).
[Crossref] [PubMed]

Liao, H.-H.

H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

Lidzey, D. G.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Lim, K.-H.

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

Lin, H.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Litzov, I.

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, and C. J. Brabec, “Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2194–2199 (2011).
[Crossref]

T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, “Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer,” Org. Electron. 12(9), 1539–1543 (2011).
[Crossref]

Liu, C.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Liu, F.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

Liu, Y.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Loo, Y.-L.

C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, “Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer,” Appl. Phys. Lett. 94(11), 113302 (2009).
[Crossref]

Lu, J.

B. R. Aïch, J. Lu, S. Beaupré, M. Leclerc, and Y. Tao, “Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells,” Org. Electron. 13(9), 1736–1741 (2012).
[Crossref]

Lyu, L.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Ma, S.

Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method,” Superlattices Microstruct. 49(6), 644–653 (2011).
[Crossref]

Ma, W.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Matt, G. J.

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

McConville, C. F.

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

Meyer, J.

E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, “Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency,” Org. Electron. 13(5), 744–749 (2012).
[Crossref]

Moet, D. J. D.

P. de Bruyn, D. J. D. Moet, and P. W. M. Blom, “A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer,” Org. Electron. 11(8), 1419–1422 (2010).
[Crossref]

Moriarty, T.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

Mu, C.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Mudd, J. J.

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

Murase, S.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

Myoung, J. M.

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

Nayak, P. K.

P. K. Nayak, J. Jang, C. Lee, and Y. Hong, “Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors,” Appl. Phys. Lett. 95(19), 193503 (2009).
[Crossref]

Nelson, J.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Bimolecular recombination losses in polythiophene: Fullerene solar cells,” Phys. Rev. B 78(11), 113201 (2008).
[Crossref]

Niu, D.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

O’Regan, B.

C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Bimolecular recombination losses in polythiophene: Fullerene solar cells,” Phys. Rev. B 78(11), 113201 (2008).
[Crossref]

Oh, H.

H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, and C. J. Brabec, “Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2194–2199 (2011).
[Crossref]

T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, “Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer,” Org. Electron. 12(9), 1539–1543 (2011).
[Crossref]

Olson, D.

E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, “Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency,” Org. Electron. 13(5), 744–749 (2012).
[Crossref]

Olson, D. C.

M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89(14), 143517 (2006).
[Crossref]

Ou, Q.-D.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
[Crossref] [PubMed]

Palacios, P.

P. Palacios, K. Sánchez, and P. Wahnón, “Ab-initio valence band spectra of Al, In doped ZnO,” Thin Solid Films 517(7), 2448–2451 (2009).
[Crossref]

Park, S. Y.

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

Parnell, A. J.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Pearson, A. J.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Pinna, L.

T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, “Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer,” Org. Electron. 12(9), 1539–1543 (2011).
[Crossref]

H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, and C. J. Brabec, “Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2194–2199 (2011).
[Crossref]

Rao, A.

A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, “Interface limited charge extraction and recombination in organic photovoltaics,” Energy Environ. Sci. 7(7), 2227–2231 (2014).
[Crossref]

Ratcliff, E. L.

E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, “Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency,” Org. Electron. 13(5), 744–749 (2012).
[Crossref]

Rochford, L. A.

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

Ruan, S.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Rubingh, J.-E. J. M.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Russell, T. P.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

Ryan, A. J.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Saif Islam, M.

H. Karaagac, E. Yengel, and M. Saif Islam, “Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol–gel method,” J. Alloys Compd. 521, 155–162 (2012).
[Crossref]

Salinas, M.

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

Sánchez, K.

P. Palacios, K. Sánchez, and P. Wahnón, “Ab-initio valence band spectra of Al, In doped ZnO,” Thin Solid Films 517(7), 2448–2451 (2009).
[Crossref]

Sauer, G.

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

Schilinsky, P.

C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, “Printing highly efficient organic solar cells,” Nano Lett. 8(9), 2806–2813 (2008).
[Crossref] [PubMed]

Schumann, S.

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

Seifter, J.

Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer,” Adv. Mater. 23(14), 1679–1683 (2011).
[Crossref] [PubMed]

Seo, J. H.

Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer,” Adv. Mater. 23(14), 1679–1683 (2011).
[Crossref] [PubMed]

Shaheen, S. E.

M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89(14), 143517 (2006).
[Crossref]

Shen, L.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Shin, K.-S.

K.-S. Shin, K.-H. Lee, H. H. Lee, D. Choi, and S.-W. Kim, “Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution,” J. Phys. Chem. C 114(37), 15782–15785 (2010).
[Crossref]

Shrotriya, V.

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88(7), 073508 (2006).
[Crossref]

Shuttle, C. G.

C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Bimolecular recombination losses in polythiophene: Fullerene solar cells,” Phys. Rev. B 78(11), 113201 (2008).
[Crossref]

Staniec, P. A.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Stavrinou, P. N.

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Steidl, M.

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

Steirer, K. X.

E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, “Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency,” Org. Electron. 13(5), 744–749 (2012).
[Crossref]

Stubhan, T.

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, “Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer,” Org. Electron. 12(9), 1539–1543 (2011).
[Crossref]

H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, and C. J. Brabec, “Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2194–2199 (2011).
[Crossref]

Sullivan, P.

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

Sun, B.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Sun, Y.

Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer,” Adv. Mater. 23(14), 1679–1683 (2011).
[Crossref] [PubMed]

Takacs, C. J.

Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer,” Adv. Mater. 23(14), 1679–1683 (2011).
[Crossref] [PubMed]

Tang, J.-X.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
[Crossref] [PubMed]

Tao, C.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Tao, Y.

B. R. Aïch, J. Lu, S. Beaupré, M. Leclerc, and Y. Tao, “Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells,” Org. Electron. 13(9), 1736–1741 (2012).
[Crossref]

Veenstra, S. C.

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Wahnón, P.

P. Palacios, K. Sánchez, and P. Wahnón, “Ab-initio valence band spectra of Al, In doped ZnO,” Thin Solid Films 517(7), 2448–2451 (2009).
[Crossref]

Walker, M.

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

Wang, C.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

Wang, T.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Wang, X.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Wei, H.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

White, M. S.

M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89(14), 143517 (2006).
[Crossref]

Wu, H.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

Wu, Y.

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

Wu, Z.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Xiao, B.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

Xiao, S.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

Xie, G.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Xie, H.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Xiong, J.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Xu, X.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Xu, Z.

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

Xu, Z. Q.

Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, and Y. R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method,” Mater. Res. Bull. 41(2), 354–358 (2006).
[Crossref]

Yan, H.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Yang, B.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Yang, G.

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

Yang, J.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

Yang, Y.

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88(7), 073508 (2006).
[Crossref]

Yao, W.

Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method,” Superlattices Microstruct. 49(6), 644–653 (2011).
[Crossref]

Yao, Y.

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88(7), 073508 (2006).
[Crossref]

Ye, Z.

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

Yengel, E.

H. Karaagac, E. Yengel, and M. Saif Islam, “Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol–gel method,” J. Alloys Compd. 521, 155–162 (2012).
[Crossref]

Yi, H.

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Yip, H.-L.

S. K. Hau, H.-L. Yip, and A. K. Y. Jen, “A review on the development of the inverted polymer solar cell architecture,” Polym. Rev. (Phila. Pa.) 50(4), 474–510 (2010).
[Crossref]

You, J.

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

Yuan, J.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Zhang, L.

Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method,” Superlattices Microstruct. 49(6), 644–653 (2011).
[Crossref]

Zhang, X.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Zhang, Z.

Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method,” Superlattices Microstruct. 49(6), 644–653 (2011).
[Crossref]

Zhao, J.

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Zhou, C.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Zhou, L.

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
[Crossref] [PubMed]

Zhu, R.

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

Zou, Y.

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Adv. Energy Mater. (1)

P. A. Staniec, A. J. Parnell, A. D. F. Dunbar, H. Yi, A. J. Pearson, T. Wang, P. E. Hopkinson, C. Kinane, R. M. Dalgliesh, A. M. Donald, A. J. Ryan, A. Iraqi, R. A. L. Jones, and D. G. Lidzey, “The nanoscale morphology of a PCDTBT:PCBM photovoltaic blend,” Adv. Energy Mater. 1(4), 499–504 (2011).
[Crossref]

Adv. Funct. Mater. (1)

Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, “Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells,” Adv. Funct. Mater. 19(8), 1227–1234 (2009).
[Crossref]

Adv. Mater. (3)

Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer,” Adv. Mater. 23(14), 1679–1683 (2011).
[Crossref] [PubMed]

S. Y. Park, B. J. Kim, K. Kim, M. S. Kang, K.-H. Lim, T. I. Lee, J. M. Myoung, H. K. Baik, J. H. Cho, and Y. S. Kim, “Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors,” Adv. Mater. 24(6), 834–838 (2012).
[Crossref] [PubMed]

J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, and J.-X. Tang, “Single-junction polymer solar cells exceeding 10% power conversion efficiency,” Adv. Mater. 27(6), 1035–1041 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88(7), 073508 (2006).
[Crossref]

H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92(17), 173303 (2008).
[Crossref]

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, and W. Ma, “Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature,” Appl. Phys. Lett. 100(20), 203906 (2012).
[Crossref]

P. K. Nayak, J. Jang, C. Lee, and Y. Hong, “Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors,” Appl. Phys. Lett. 95(19), 193503 (2009).
[Crossref]

M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89(14), 143517 (2006).
[Crossref]

C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, “Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer,” Appl. Phys. Lett. 94(11), 113302 (2009).
[Crossref]

Curr. Appl. Phys. (1)

Y. Caglar, M. Caglar, and S. Ilican, “Microstructural, optical and electrical studies on sol gel derived ZnO and ZnO:Al films,” Curr. Appl. Phys. 12(3), 963–968 (2012).
[Crossref]

Energy Environ. Sci. (1)

A. Kumar, G. Lakhwani, E. Elmalem, W. T. S. Huck, A. Rao, N. C. Greenham, and R. H. Friend, “Interface limited charge extraction and recombination in organic photovoltaics,” Energy Environ. Sci. 7(7), 2227–2231 (2014).
[Crossref]

J. Alloys Compd. (1)

H. Karaagac, E. Yengel, and M. Saif Islam, “Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol–gel method,” J. Alloys Compd. 521, 155–162 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, “Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer,” J. Am. Chem. Soc. 132(13), 4887–4893 (2010).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, K. Forberich, G. J. Matt, M. Halik, and C. J. Brabec, “Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,” J. Mater. Chem. A Mater. Energy Sustain. 1(19), 6004–6009 (2013).
[Crossref]

J. Phys. Chem. C (2)

K.-S. Shin, K.-H. Lee, H. H. Lee, D. Choi, and S.-W. Kim, “Enhanced power conversion efficiency of inverted organic solar cells with a Ga-doped ZnO nanostructured thin film prepared using aqueous solution,” J. Phys. Chem. C 114(37), 15782–15785 (2010).
[Crossref]

I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, “Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells,” J. Phys. Chem. C 117(1), 49–57 (2013).
[Crossref]

Mater. Res. Bull. (1)

Z. Q. Xu, H. Deng, Y. Li, Q. H. Guo, and Y. R. Li, “Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method,” Mater. Res. Bull. 41(2), 354–358 (2006).
[Crossref]

Nano Lett. (1)

C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, “Printing highly efficient organic solar cells,” Nano Lett. 8(9), 2806–2813 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, “Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells,” Nat. Commun. 5, 5293 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater. 7(2), 158–164 (2008).
[Crossref] [PubMed]

Nat. Photonics (3)

Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, and Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage,” Nat. Photonics 9(3), 174–179 (2015).
[Crossref]

G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics 6(3), 153–161 (2012).
[Crossref]

L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics 6(3), 180–185 (2012).
[Crossref]

Org. Electron. (5)

B. R. Aïch, J. Lu, S. Beaupré, M. Leclerc, and Y. Tao, “Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells,” Org. Electron. 13(9), 1736–1741 (2012).
[Crossref]

T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, “Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer,” Org. Electron. 12(9), 1539–1543 (2011).
[Crossref]

P. de Bruyn, D. J. D. Moet, and P. W. M. Blom, “A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer,” Org. Electron. 11(8), 1419–1422 (2010).
[Crossref]

E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, “Energy level alignment in PCDTBT:PC70BM solar cells: solution processed NiOx for improved hole collection and efficiency,” Org. Electron. 13(5), 744–749 (2012).
[Crossref]

J. Xiong, B. Yang, J. Yuan, L. Fan, X. Hu, H. Xie, L. Lyu, R. Cui, Y. Zou, C. Zhou, D. Niu, Y. Gao, and J. Yang, “Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer,” Org. Electron. 17, 253–261 (2015).
[Crossref]

Phys. Rev. B (1)

C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Bimolecular recombination losses in polythiophene: Fullerene solar cells,” Phys. Rev. B 78(11), 113201 (2008).
[Crossref]

Phys. Rev. B Condens. Matter (2)

G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B Condens. Matter 47(1), 558–561 (1993).
[Crossref] [PubMed]

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Polym. Rev. (Phila. Pa.) (1)

S. K. Hau, H.-L. Yip, and A. K. Y. Jen, “A review on the development of the inverted polymer solar cell architecture,” Polym. Rev. (Phila. Pa.) 50(4), 474–510 (2010).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, and C. J. Brabec, “Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2194–2199 (2011).
[Crossref]

Y. Galagan, J.-E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, “ITO-free flexible organic solar cells with printed current collecting grids,” Sol. Energy Mater. Sol. Cells 95(5), 1339–1343 (2011).
[Crossref]

Superlattices Microstruct. (1)

Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, “Influence of deposition temperature on the crystallinity of Al-doped ZnO thin films at glass substrates prepared by RF magnetron sputtering method,” Superlattices Microstruct. 49(6), 644–653 (2011).
[Crossref]

Thin Solid Films (1)

P. Palacios, K. Sánchez, and P. Wahnón, “Ab-initio valence band spectra of Al, In doped ZnO,” Thin Solid Films 517(7), 2448–2451 (2009).
[Crossref]

Other (2)

B. D. Cullity, Elements of X-ray diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978).

C. J. Brabec, V. Dyakonov, J. Parisi, and N. S. Sariciftci, Organic Photovoltaics: Concepts and Realization (Springer, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) X-ray diffraction patterns of the undoped ZnO and AZO films with different Al-doping concentrations. (b, c) HRTEM images of the undoped ZnO and (d, e) 5.83 at.% AZO.
Fig. 2
Fig. 2 Variation of resistivity with doping concentration of AZO films.
Fig. 3
Fig. 3 (a) Current density-voltage characteristics, (b) IPCE spectra of the inverted solar cell with the undoped ZnO and AZO with different Al-doping concentrations, (c) PCE and Jsc and (d) Voc and FF as a function of the Al-doping concentration.
Fig. 4
Fig. 4 (a) The density of states (DOS) for the AZO with various Al concentrations, where the Fermi level is set to zero, (b) the sum of conduction bottom states in AZO.

Tables (1)

Tables Icon

Table 1 Device performance of the inverted solar cell with ZnO and AZO with different Al-doping concentrations under AM1.5G illumination with 100 mW/cm2 intensity.

Metrics