Abstract

The method of radial velocities (RV) is applied to estimate aircraft wake vortex parameters from measurements conducted with pulsed coherent Doppler lidar (PCDL). Operations of the Stream Line lidar and the 2-µm PCDL are simulated numerically to analyze the accuracy of the estimated wake vortex parameters with the RV method. The RV method is also used to estimate wake vortex trajectories and circulation from lidar measurements at Tomsk and Munich airports. The method of velocity envelopes and the RV method are compared employing data gathered with the 2-µm PCDL. The domain of applicability of the RV method is determined.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Estimation of aircraft wake vortex parameters from data measured with a 1.5-μm coherent Doppler lidar

I. N. Smalikho and V. A. Banakh
Opt. Lett. 40(14) 3408-3411 (2015)

Parameter-retrieval of dry-air wake vortices with a scanning Doppler Lidar

Hang Gao, Jianbing Li, P. W. Chan, K. K. Hon, and Xuesong Wang
Opt. Express 26(13) 16377-16392 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. I. Babkin, A. S. Belotserkovskiy, L. I. Turchak, N. A. Baranov, A. I. Zamyatin, M. I. Kanevsky, V. V. Morozov, I. V. Pasekunov, and N. Y. Chizhov, Wake vortex flight safety systems for aircrafts (Nauka, Moscow, 2008), pp. 1–373. [in Russian]
  2. F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).
  3. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
    [Crossref]
  4. S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41(11), 2175–2196 (1994).
    [Crossref]
  5. F. Köpp, S. Rahm, and I. N. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21(2), 194–206 (2004).
    [Crossref]
  6. V. A. Banakh and I. N. Smalikho, Coherent Doppler wind lidars in a turbulent atmosphere (Artech House, Boston & London, 2013), pp. 1–248.
  7. S. Rahm and I. N. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45(4), 1148–1155 (2008).
    [Crossref]
  8. I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
    [Crossref]
  9. G. Pearson, F. Davies, and C. Collier, “An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Technol. 26(2), 240–250 (2009).
    [Crossref]
  10. isV. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Y. Arshinov, and P. N. Antokhin, “Joint radiosonde and doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Oceanic Opt. 28(2), 185–191 (2015).
    [Crossref]
  11. V. A. Banakh and I. N. Smalikho, “Aircraft wake vortex parameterization based on 1.5-μm Coherent Doppler lidar data”, Proceedings of 27th International Laser Radar Conference, New York, July 5–10, 2015 (accepted).
  12. V. A. Banakh, A. Brewer, E. L. Pichugina, and I. N. Smalikho, “Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal,” Atmos. Oceanic Opt. 23(5), 381–388 (2010).
    [Crossref]
  13. T. Gerz, F. Holzäpfel, and D. Darracq, “Commercial aircraft wake vortices,” Prog. Aerosp. Sci. 38(3), 181–208 (2002).
    [Crossref]
  14. C.W. Schwarz, K.U. Hahn, and D. Fischenberg, “Wake encounter severity assessment based on validated aerodynamic interaction models”, AIAA Paper 2010 – 7679.
    [Crossref]
  15. D. C. Burnham and J. N. Hallock, “Chicago monostatic acoustic vortex sensing system” U.S. Department of Transportation. Report No. DOT-TSC-FAA-79–103. 1982. 206 pp.
  16. F. Köpp, S. Rahm, I. Smakikho, A. Dolfi, J.-P. Cariou, and M. Harris, “Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars,” J. Aircr. 42(4), 916–923 (2005).
    [Crossref]
  17. F. Holzäpfel and M. Steen, “Aircraft wake-vortex evolution in ground proximity: Analysis and parameterization,” AIAA J. 45(1), 218–227 (2007).
    [Crossref]
  18. F. N. Holzäpfel, A. Stephan, T. Misaka, and S. Körner, “Wake vortex evolution during approach and landing with and without plate lines”, AIAA Paper 2014–0925.
    [Crossref]
  19. F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. Aerosp. Technol., (2015), doi: (in print).
    [Crossref]

2015 (1)

isV. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Y. Arshinov, and P. N. Antokhin, “Joint radiosonde and doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Oceanic Opt. 28(2), 185–191 (2015).
[Crossref]

2010 (1)

V. A. Banakh, A. Brewer, E. L. Pichugina, and I. N. Smalikho, “Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal,” Atmos. Oceanic Opt. 23(5), 381–388 (2010).
[Crossref]

2009 (2)

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

G. Pearson, F. Davies, and C. Collier, “An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Technol. 26(2), 240–250 (2009).
[Crossref]

2008 (1)

S. Rahm and I. N. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45(4), 1148–1155 (2008).
[Crossref]

2007 (1)

F. Holzäpfel and M. Steen, “Aircraft wake-vortex evolution in ground proximity: Analysis and parameterization,” AIAA J. 45(1), 218–227 (2007).
[Crossref]

2005 (2)

F. Köpp, S. Rahm, I. Smakikho, A. Dolfi, J.-P. Cariou, and M. Harris, “Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars,” J. Aircr. 42(4), 916–923 (2005).
[Crossref]

I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

2004 (1)

F. Köpp, S. Rahm, and I. N. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21(2), 194–206 (2004).
[Crossref]

2002 (1)

T. Gerz, F. Holzäpfel, and D. Darracq, “Commercial aircraft wake vortices,” Prog. Aerosp. Sci. 38(3), 181–208 (2002).
[Crossref]

1994 (1)

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41(11), 2175–2196 (1994).
[Crossref]

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Antokhin, P. N.

isV. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Y. Arshinov, and P. N. Antokhin, “Joint radiosonde and doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Oceanic Opt. 28(2), 185–191 (2015).
[Crossref]

Arshinov, M. Y.

isV. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Y. Arshinov, and P. N. Antokhin, “Joint radiosonde and doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Oceanic Opt. 28(2), 185–191 (2015).
[Crossref]

Banakh, V. A.

isV. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Y. Arshinov, and P. N. Antokhin, “Joint radiosonde and doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Oceanic Opt. 28(2), 185–191 (2015).
[Crossref]

V. A. Banakh, A. Brewer, E. L. Pichugina, and I. N. Smalikho, “Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal,” Atmos. Oceanic Opt. 23(5), 381–388 (2010).
[Crossref]

V. A. Banakh and I. N. Smalikho, “Aircraft wake vortex parameterization based on 1.5-μm Coherent Doppler lidar data”, Proceedings of 27th International Laser Radar Conference, New York, July 5–10, 2015 (accepted).

Belan, B. D.

isV. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Y. Arshinov, and P. N. Antokhin, “Joint radiosonde and doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Oceanic Opt. 28(2), 185–191 (2015).
[Crossref]

Brewer, A.

V. A. Banakh, A. Brewer, E. L. Pichugina, and I. N. Smalikho, “Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal,” Atmos. Oceanic Opt. 23(5), 381–388 (2010).
[Crossref]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Cariou, J.-P.

F. Köpp, S. Rahm, I. Smakikho, A. Dolfi, J.-P. Cariou, and M. Harris, “Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars,” J. Aircr. 42(4), 916–923 (2005).
[Crossref]

Collier, C.

G. Pearson, F. Davies, and C. Collier, “An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Technol. 26(2), 240–250 (2009).
[Crossref]

Darracq, D.

T. Gerz, F. Holzäpfel, and D. Darracq, “Commercial aircraft wake vortices,” Prog. Aerosp. Sci. 38(3), 181–208 (2002).
[Crossref]

Davies, F.

G. Pearson, F. Davies, and C. Collier, “An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Technol. 26(2), 240–250 (2009).
[Crossref]

Dolfi, A.

F. Köpp, S. Rahm, I. Smakikho, A. Dolfi, J.-P. Cariou, and M. Harris, “Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars,” J. Aircr. 42(4), 916–923 (2005).
[Crossref]

Falits, A. V.

isV. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Y. Arshinov, and P. N. Antokhin, “Joint radiosonde and doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Oceanic Opt. 28(2), 185–191 (2015).
[Crossref]

Frech, M.

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

Gerz, T.

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

T. Gerz, F. Holzäpfel, and D. Darracq, “Commercial aircraft wake vortices,” Prog. Aerosp. Sci. 38(3), 181–208 (2002).
[Crossref]

Hahn, K.-U.

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Hannon, S. M.

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41(11), 2175–2196 (1994).
[Crossref]

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Harris, M.

F. Köpp, S. Rahm, I. Smakikho, A. Dolfi, J.-P. Cariou, and M. Harris, “Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars,” J. Aircr. 42(4), 916–923 (2005).
[Crossref]

Heel, T.

F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. Aerosp. Technol., (2015), doi: (in print).
[Crossref]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Holzäpfel, F.

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

F. Holzäpfel and M. Steen, “Aircraft wake-vortex evolution in ground proximity: Analysis and parameterization,” AIAA J. 45(1), 218–227 (2007).
[Crossref]

T. Gerz, F. Holzäpfel, and D. Darracq, “Commercial aircraft wake vortices,” Prog. Aerosp. Sci. 38(3), 181–208 (2002).
[Crossref]

F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. Aerosp. Technol., (2015), doi: (in print).
[Crossref]

Köpp, F.

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

F. Köpp, S. Rahm, I. Smakikho, A. Dolfi, J.-P. Cariou, and M. Harris, “Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars,” J. Aircr. 42(4), 916–923 (2005).
[Crossref]

F. Köpp, S. Rahm, and I. N. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21(2), 194–206 (2004).
[Crossref]

Körner, S.

F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. Aerosp. Technol., (2015), doi: (in print).
[Crossref]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Pearson, G.

G. Pearson, F. Davies, and C. Collier, “An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Technol. 26(2), 240–250 (2009).
[Crossref]

Pichugina, E. L.

V. A. Banakh, A. Brewer, E. L. Pichugina, and I. N. Smalikho, “Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal,” Atmos. Oceanic Opt. 23(5), 381–388 (2010).
[Crossref]

Rahm, S.

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

S. Rahm and I. N. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45(4), 1148–1155 (2008).
[Crossref]

I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

F. Köpp, S. Rahm, I. Smakikho, A. Dolfi, J.-P. Cariou, and M. Harris, “Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars,” J. Aircr. 42(4), 916–923 (2005).
[Crossref]

F. Köpp, S. Rahm, and I. N. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21(2), 194–206 (2004).
[Crossref]

Schwarz, C.

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

Smakikho, I.

F. Köpp, S. Rahm, I. Smakikho, A. Dolfi, J.-P. Cariou, and M. Harris, “Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars,” J. Aircr. 42(4), 916–923 (2005).
[Crossref]

Smalikho, I.

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

Smalikho, I. N.

isV. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Y. Arshinov, and P. N. Antokhin, “Joint radiosonde and doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Oceanic Opt. 28(2), 185–191 (2015).
[Crossref]

V. A. Banakh, A. Brewer, E. L. Pichugina, and I. N. Smalikho, “Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal,” Atmos. Oceanic Opt. 23(5), 381–388 (2010).
[Crossref]

S. Rahm and I. N. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45(4), 1148–1155 (2008).
[Crossref]

I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

F. Köpp, S. Rahm, and I. N. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21(2), 194–206 (2004).
[Crossref]

V. A. Banakh and I. N. Smalikho, “Aircraft wake vortex parameterization based on 1.5-μm Coherent Doppler lidar data”, Proceedings of 27th International Laser Radar Conference, New York, July 5–10, 2015 (accepted).

Steen, M.

F. Holzäpfel and M. Steen, “Aircraft wake-vortex evolution in ground proximity: Analysis and parameterization,” AIAA J. 45(1), 218–227 (2007).
[Crossref]

Stephan, A.

F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. Aerosp. Technol., (2015), doi: (in print).
[Crossref]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

Tafferner, A.

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

Thomson, J. A.

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41(11), 2175–2196 (1994).
[Crossref]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

AIAA J. (1)

F. Holzäpfel and M. Steen, “Aircraft wake-vortex evolution in ground proximity: Analysis and parameterization,” AIAA J. 45(1), 218–227 (2007).
[Crossref]

Air Traffic Control Quarterly (1)

F. Holzäpfel, T. Gerz, M. Frech, A. Tafferner, F. Köpp, I. Smalikho, S. Rahm, K.-U. Hahn, and C. Schwarz, “‘The Wake Vortex Prediction and Monitoring System WSVBS - Part I: Design,” Air Traffic Control Quarterly 17(4), 301–322 (2009).

Atmos. Oceanic Opt. (2)

isV. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Y. Arshinov, and P. N. Antokhin, “Joint radiosonde and doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Oceanic Opt. 28(2), 185–191 (2015).
[Crossref]

V. A. Banakh, A. Brewer, E. L. Pichugina, and I. N. Smalikho, “Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal,” Atmos. Oceanic Opt. 23(5), 381–388 (2010).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Rem. Sens. 31(1), 4–15 (1993).
[Crossref]

J. Aircr. (2)

S. Rahm and I. N. Smalikho, “Aircraft wake vortex measurement with airborne coherent Doppler lidar,” J. Aircr. 45(4), 1148–1155 (2008).
[Crossref]

F. Köpp, S. Rahm, I. Smakikho, A. Dolfi, J.-P. Cariou, and M. Harris, “Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars,” J. Aircr. 42(4), 916–923 (2005).
[Crossref]

J. Atmos. Ocean. Technol. (3)

I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

G. Pearson, F. Davies, and C. Collier, “An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Technol. 26(2), 240–250 (2009).
[Crossref]

F. Köpp, S. Rahm, and I. N. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar,” J. Atmos. Ocean. Technol. 21(2), 194–206 (2004).
[Crossref]

J. Mod. Opt. (1)

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41(11), 2175–2196 (1994).
[Crossref]

Prog. Aerosp. Sci. (1)

T. Gerz, F. Holzäpfel, and D. Darracq, “Commercial aircraft wake vortices,” Prog. Aerosp. Sci. 38(3), 181–208 (2002).
[Crossref]

Other (7)

C.W. Schwarz, K.U. Hahn, and D. Fischenberg, “Wake encounter severity assessment based on validated aerodynamic interaction models”, AIAA Paper 2010 – 7679.
[Crossref]

D. C. Burnham and J. N. Hallock, “Chicago monostatic acoustic vortex sensing system” U.S. Department of Transportation. Report No. DOT-TSC-FAA-79–103. 1982. 206 pp.

V. I. Babkin, A. S. Belotserkovskiy, L. I. Turchak, N. A. Baranov, A. I. Zamyatin, M. I. Kanevsky, V. V. Morozov, I. V. Pasekunov, and N. Y. Chizhov, Wake vortex flight safety systems for aircrafts (Nauka, Moscow, 2008), pp. 1–373. [in Russian]

F. N. Holzäpfel, A. Stephan, T. Misaka, and S. Körner, “Wake vortex evolution during approach and landing with and without plate lines”, AIAA Paper 2014–0925.
[Crossref]

F. Holzäpfel, A. Stephan, T. Heel, and S. Körner, “Enhanced wake vortex decay in ground proximity triggered by plate lines,” Aircr. Eng. Aerosp. Technol., (2015), doi: (in print).
[Crossref]

V. A. Banakh and I. N. Smalikho, Coherent Doppler wind lidars in a turbulent atmosphere (Artech House, Boston & London, 2013), pp. 1–248.

V. A. Banakh and I. N. Smalikho, “Aircraft wake vortex parameterization based on 1.5-μm Coherent Doppler lidar data”, Proceedings of 27th International Laser Radar Conference, New York, July 5–10, 2015 (accepted).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Geometry of measurement by PCDL scanning in the vertical plane.
Fig. 2
Fig. 2 Functions D ( R ) for the Stream Line lidar (a, b) and the 2-µm PCDL (c, d) calculated at Γ = 150 m2/s, b = 15 m and r C = 1 m (a); Γ = 250 m2/s, b = 27 m, and r C = 1.7 m (b, c); Γ = 500 m2/s, b = 63 m, and r C = 3.2 m (d). Dashed lines correspond to the preset model distances from the lidar to the axes of the port vortex and starboard vortex.
Fig. 3
Fig. 3 Radial velocities V ˜ r ( R k , φ m ; 1 ) (a), V ˜ r ( R k , φ ; 1 ) at φ = 4.2° (b), V ˜ r ( R k , φ m ; 2 ) (c) and the function D ( R k ; 2 ) (d) obtained from the measurements by the Stream Line lidar at the airfield of the Tomsk Airport on 21 August 2014. A landing B737-800 aircraft intersected the probing beam scanning plane at 07:45:24 LT at a height of 35 m.
Fig. 4
Fig. 4 Doppler spectra at different elevation angles φ m and fixed distances R ^ C 2 (a) and R ^ C 1 (b). Blue curves are achieved by Eq. (11).
Fig. 5
Fig. 5 Trajectories of vortex axes (a) and evolution of vortex circulation (b). The results are obtained by the RV method from the data measured by the Stream Line lidar at the airfield of the Tomsk Airport on 21 August 2014 once the B737-800 aircraft intersected the probing beam scanning plane at 07:45:24 LT.
Fig. 6
Fig. 6 Radial velocity V ˜ r ( R k , φ m ; 4 ) (a) and function D ( R k ; 4 ) (b) obtained from measurements with the 2-µm PCDL at the airfield of Munich Airport on 5 April 2011 once the landing A340-600 intersected the probing beam scanning plane at 07:28:05 LT.
Fig. 7
Fig. 7 Trajectories of vortex axes (a) and evolution of vortex circulation with time (b). The results are obtained by the RV method (squares connected by solid lines) and the VE method (circles connected by dashed lines) from the data measured by the 2-µm PCDL at the airfield of Munich Airport on 5 April 2011 once the A340-600 aircraft intersected the scanning plane at 07:28:05 LT.

Tables (2)

Tables Icon

Table 1 Parameters of Lidar Experiments

Tables Icon

Table 2 Theoretical Estimates of Errors in Determination of Wake Vortex Parameters from Data Measured by the Stream Line Lidar

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

V ˜ r ( R k , φ m ; n ) = V ^ r ( R k , φ m ; n 0 + n ) V ^ r ( R k , φ m ; n 0 ) ,
max φ { V ˜ r ( R k , φ m ; n ) } = V ˜ r ( R k , φ max ; n ) ,
min φ { V ˜ r ( R k , φ m ; n ) } = V ˜ r ( R k , φ min ; n ) ,
E ( R k ; n ) = [ V ˜ r ( R k , φ max ; n ) ] 2 + [ V ˜ r ( R k , φ min ; n ) ] 2 ,
φ ^ C i ( n ) = [ φ max ( R C i ; n ) + φ min ( R C i ; n ) ] / 2 ,
D ( R k ; n ) = m [ V ˜ r ( R k , φ m ; n ) ] 2 .
r C i ( t n ( i ) ) = { Z C i ( t n ( i ) ) = R ^ C i ( n ) sin [ φ ^ C i ( n ) ] , Y C i ( t n ( i ) ) = R ^ C i ( n ) cos [ φ ^ C i ( n ) ] } .
min { ρ ( Γ i ) } = ρ ( Γ ^ i ) .
ρ ( Γ i ) = m [ V ˜ r ( R ^ C i , φ m ; n ) V ¯ r ( R ^ C i , φ m | Γ 1 , Γ 2 ) ] 2 ,
C S ( l T s , R ^ C i , φ m ) = + d z A ( l , z ) exp [ 2 π j l B V 1 V r ( R ^ C i + z , φ m ) ] ,
V r ( R , φ ) = 1 2 π i = 1 2 ( 1 ) i Γ i R ^ C i sin ( φ φ ^ C i ) cos θ ( R sin φ R ^ C i sin φ ^ C i ) 2 + ( R cos φ R ^ C i cos φ ^ C i ) 2 cos 2 θ + r C 2 ,
max { S D ( V l , R ^ C i , φ m ) } = S D ( V ¯ r , R ^ C i , φ m ) ,
Γ 0 = M A g / ( ρ a b 0 V A )

Metrics