Abstract

This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Role of spectral non-idealities in the design of solar thermophotovoltaics

Andrej Lenert, Youngsuk Nam, David M. Bierman, and Evelyn N. Wang
Opt. Express 22(S6) A1604-A1618 (2014)

Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application

Huacun Wang, Qin Chen, Long Wen, Shichao Song, Xin Hu, and Gaiqi Xu
Photon. Res. 3(6) 329-334 (2015)

Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications

Jonathan J. Foley, Craig Ungaro, Keye Sun, Mool C. Gupta, and Stephen K. Gray
Opt. Express 23(24) A1373-A1387 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
    [Crossref]
  2. D. L. Chubb, “Fundamentals of Thermophotovoltaic Energy Conversion” (Elsevier, 2007).
  3. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Progress in Photovoltaics: Research and Applications 23, 1–9 (2014).
    [Crossref]
  4. H. Yugami, H. Sai, K. Nakamura, H. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12 eutectic composite selective emitter,” IEEE Photovoltaic Specialists Conference28, 1214–1217 (2000).
  5. A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Progress in Photovoltaics: Research and Applications 890, 327–334 (2012).
  6. A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” AIP Conference Proceedings890, 327–334 (2007).
  7. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotech. 9, 126–130 (2014).
    [Crossref]
  8. M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
    [Crossref]
  9. Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energ. Mat. Sol. Cells 122, 287–296 (2014).
    [Crossref]
  10. “Reference solar spectral irradiance: ASTM g-173,” http://rredc.nrel.gov/solar/spectra/am1.5/ (2012). Accessed: 2015-06-10.
  11. K. Ryu, J.-G. Rhee, K.-M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Solar Energy 80, 1580–1587 (2006).
    [Crossref]
  12. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultralow reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt. 49, 5983 (2010).
    [Crossref]
  13. L. G. Ferguson and L. M. Fraas, “Theoretical study of GaSb PV cell efficiency as a function of temperature,” Sol. Energ. Mat. Sol. Cells 39, 11–18 (1995).
    [Crossref]

2015 (1)

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
[Crossref]

2014 (3)

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energ. Mat. Sol. Cells 122, 287–296 (2014).
[Crossref]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Progress in Photovoltaics: Research and Applications 23, 1–9 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotech. 9, 126–130 (2014).
[Crossref]

2012 (1)

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Progress in Photovoltaics: Research and Applications 890, 327–334 (2012).

2010 (1)

2006 (1)

K. Ryu, J.-G. Rhee, K.-M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Solar Energy 80, 1580–1587 (2006).
[Crossref]

1995 (1)

L. G. Ferguson and L. M. Fraas, “Theoretical study of GaSb PV cell efficiency as a function of temperature,” Sol. Energ. Mat. Sol. Cells 39, 11–18 (1995).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Algora, C.

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Progress in Photovoltaics: Research and Applications 890, 327–334 (2012).

Andreev, V. M.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” AIP Conference Proceedings890, 327–334 (2007).

Bermel, P.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energ. Mat. Sol. Cells 122, 287–296 (2014).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotech. 9, 126–130 (2014).
[Crossref]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotech. 9, 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energ. Mat. Sol. Cells 122, 287–296 (2014).
[Crossref]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotech. 9, 126–130 (2014).
[Crossref]

Chubb, D. L.

D. L. Chubb, “Fundamentals of Thermophotovoltaic Energy Conversion” (Elsevier, 2007).

Datas, A.

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Progress in Photovoltaics: Research and Applications 890, 327–334 (2012).

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Progress in Photovoltaics: Research and Applications 23, 1–9 (2014).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Progress in Photovoltaics: Research and Applications 23, 1–9 (2014).
[Crossref]

Ferguson, L. G.

L. G. Ferguson and L. M. Fraas, “Theoretical study of GaSb PV cell efficiency as a function of temperature,” Sol. Energ. Mat. Sol. Cells 39, 11–18 (1995).
[Crossref]

Fraas, L. M.

L. G. Ferguson and L. M. Fraas, “Theoretical study of GaSb PV cell efficiency as a function of temperature,” Sol. Energ. Mat. Sol. Cells 39, 11–18 (1995).
[Crossref]

Gazaryan, P. Y.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” AIP Conference Proceedings890, 327–334 (2007).

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Progress in Photovoltaics: Research and Applications 23, 1–9 (2014).
[Crossref]

Gupta, M. C.

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Progress in Photovoltaics: Research and Applications 23, 1–9 (2014).
[Crossref]

Iyengar, V. V.

Khvostikov, V. P.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” AIP Conference Proceedings890, 327–334 (2007).

Khvostikova, O. A.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” AIP Conference Proceedings890, 327–334 (2007).

Kim, J.

K. Ryu, J.-G. Rhee, K.-M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Solar Energy 80, 1580–1587 (2006).
[Crossref]

Kohiyama, A.

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
[Crossref]

Lenert, A.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energ. Mat. Sol. Cells 122, 287–296 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotech. 9, 126–130 (2014).
[Crossref]

Nakagawa, H.

H. Yugami, H. Sai, K. Nakamura, H. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12 eutectic composite selective emitter,” IEEE Photovoltaic Specialists Conference28, 1214–1217 (2000).

Nakamura, K.

H. Yugami, H. Sai, K. Nakamura, H. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12 eutectic composite selective emitter,” IEEE Photovoltaic Specialists Conference28, 1214–1217 (2000).

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotech. 9, 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energ. Mat. Sol. Cells 122, 287–296 (2014).
[Crossref]

Nayak, B. K.

Ohtsubo, H.

H. Yugami, H. Sai, K. Nakamura, H. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12 eutectic composite selective emitter,” IEEE Photovoltaic Specialists Conference28, 1214–1217 (2000).

Park, K.-M.

K. Ryu, J.-G. Rhee, K.-M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Solar Energy 80, 1580–1587 (2006).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Rhee, J.-G.

K. Ryu, J.-G. Rhee, K.-M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Solar Energy 80, 1580–1587 (2006).
[Crossref]

Ryu, K.

K. Ryu, J.-G. Rhee, K.-M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Solar Energy 80, 1580–1587 (2006).
[Crossref]

Sai, H.

H. Yugami, H. Sai, K. Nakamura, H. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12 eutectic composite selective emitter,” IEEE Photovoltaic Specialists Conference28, 1214–1217 (2000).

Shimizu, M.

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotech. 9, 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energ. Mat. Sol. Cells 122, 287–296 (2014).
[Crossref]

Sorokina, S. V.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” AIP Conference Proceedings890, 327–334 (2007).

Vlasov, A. S.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” AIP Conference Proceedings890, 327–334 (2007).

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotech. 9, 126–130 (2014).
[Crossref]

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energ. Mat. Sol. Cells 122, 287–296 (2014).
[Crossref]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Progress in Photovoltaics: Research and Applications 23, 1–9 (2014).
[Crossref]

Yeng, Y. X.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energ. Mat. Sol. Cells 122, 287–296 (2014).
[Crossref]

Yugami, H.

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
[Crossref]

H. Yugami, H. Sai, K. Nakamura, H. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12 eutectic composite selective emitter,” IEEE Photovoltaic Specialists Conference28, 1214–1217 (2000).

Appl. Opt. (1)

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961).
[Crossref]

J. Photon. Energy (1)

M. Shimizu, A. Kohiyama, and H. Yugami, “High-efficiency solar thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
[Crossref]

Nature Nanotech. (1)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature Nanotech. 9, 126–130 (2014).
[Crossref]

Progress in Photovoltaics: Research and Applications (2)

A. Datas and C. Algora, “Development and experimental evaluation of a complete solar thermophotovoltaic system,” Progress in Photovoltaics: Research and Applications 890, 327–334 (2012).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Progress in Photovoltaics: Research and Applications 23, 1–9 (2014).
[Crossref]

Sol. Energ. Mat. Sol. Cells (2)

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljacic, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energ. Mat. Sol. Cells 122, 287–296 (2014).
[Crossref]

L. G. Ferguson and L. M. Fraas, “Theoretical study of GaSb PV cell efficiency as a function of temperature,” Sol. Energ. Mat. Sol. Cells 39, 11–18 (1995).
[Crossref]

Solar Energy (1)

K. Ryu, J.-G. Rhee, K.-M. Park, and J. Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Solar Energy 80, 1580–1587 (2006).
[Crossref]

Other (4)

“Reference solar spectral irradiance: ASTM g-173,” http://rredc.nrel.gov/solar/spectra/am1.5/ (2012). Accessed: 2015-06-10.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV systems with solar powered tungsten emitters,” AIP Conference Proceedings890, 327–334 (2007).

H. Yugami, H. Sai, K. Nakamura, H. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3/Er3Al5O12 eutectic composite selective emitter,” IEEE Photovoltaic Specialists Conference28, 1214–1217 (2000).

D. L. Chubb, “Fundamentals of Thermophotovoltaic Energy Conversion” (Elsevier, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diagram of a) a flat STPV system and b) a cylindrical STPV system, both with solar absorber and thermal emitter.
Fig. 2
Fig. 2 a) Cross-sectional drawing of system setup and b) top-down diagram of system setup.
Fig. 3
Fig. 3 a) The flow of power through an STPV system, showing each component and the power remaining after each loss. Total efficiency (ηtotal ) is given by Isc × Voc × FF divided by the input power, ϕinput . Losses are quantified and described in Table 1. b) measured and simulated reflectance of an emitting surface made of a 160 nm thick Si3N4 coating on a W substrate.
Fig. 4
Fig. 4 The measured current vs. voltage curve of the GaSb cell used in this experiment. A FF of 0.61 was measured.
Fig. 5
Fig. 5 a) SEM of the absorbing surface texture before heating and b) SEM of the absorbing surface after heating to 1700 K.
Fig. 6
Fig. 6 Comparison of simulated and experimental values for a) system temperature and b) system efficiency with concentration factor.

Tables (1)

Tables Icon

Table 1 List of losses in the simulated STPV system using a tungsten substrate at a concentration ratio of 2500 (losses shown in Fig. 3(a), where F PV is the view-factor between the emitting surface and PV cell, and E inc is the optical energy available to the absorbing surface.

Metrics