Abstract

A laser based on a ribbon multicore ytterbium doped fiber where different cores amplified different spectral bands, has been mode-locked with a single saturable absorber mirror. Tunable dual wavelength synchronized picosecond pulses were obtained. Compensation of differential cavity roundtrip times was achieved in the fiber.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral division amplification of a 40 nm bandwidth in a multicore Yb doped fiber and femtosecond pulse synthesis with in-fiber delay line

Ph. Rigaud, V. Kermene, G. Bouwmans, L. Bigot, A. Desfarges-Berthelemot, and A. Barthélémy
Opt. Express 23(21) 27448-27456 (2015)

Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm

A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett
Opt. Lett. 35(18) 3027-3029 (2010)

Diode-pumped Kerr-lens mode-locked Yb:LYSO laser with 61fs pulse duration

Wenlong Tian, Zhaohua Wang, Long Wei, Yingnan Peng, Jinwei Zhang, Zheng Zhu, Jiangfeng Zhu, Hainian Han, Yulei Jia, Lihe Zheng, Jun Xu, and Zhiyi Wei
Opt. Express 22(16) 19040-19046 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. R. Chen, G. E. Town, P.-Y. Cortes, S. LaRochelle, and P. W. E. Smith, “Dual-wavelength actively modelocked fibre laser with 0.7 nm wavelength spacing,” Electron. Lett. 36(23), 1921–1923 (2000).
    [Crossref]
  2. Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
    [Crossref]
  3. S. Pan and C. Lou, “Stable multiwavelength dispersion tuned actively mode-locked erbium doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 18(13), 1451–1453 (2006).
    [Crossref]
  4. Z. W. Xu and Z. X. Zhang, “All-normal dispersion multiwavelength dissipative soliton Yb-doped fiber laser,” Laser Phys. Lett. 10(8), 085105 (2013).
    [Crossref]
  5. D. Pudo and L. R. Chen, “Actively modelocked, quadruple wavelength fibre laser with pump controlled wavelength switching,” Electron. Lett. 39(3), 272–274 (2003).
    [Crossref]
  6. Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
    [Crossref] [PubMed]
  7. Z.-C. Luo, A.-P. Luo, and W.-C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
    [Crossref]
  8. M. Zhang, E. J. R. Kelleher, A. S. Pozharov, E. D. Obraztsova, S. V. Popov, and J. R. Taylor, “Passive synchronization of all-fiber lasers through a common saturable absorber,” Opt. Lett. 36(20), 3984–3986 (2011).
    [Crossref] [PubMed]
  9. J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21(16), 18994–19002 (2013).
    [Crossref] [PubMed]
  10. J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
    [Crossref] [PubMed]
  11. P. Rigaud, V. Kermene, G. Bouwmans, L. Bigot, A. Desfarges-Berthelemot, D. Labat, A. Le Rouge, T. Mansuryan, and A. Barthélémy, “Spatially dispersive amplification in a 12-core fiber and femtosecond pulse synthesis by coherent spectral combining,” Opt. Express 21(11), 13555–13563 (2013).
    [Crossref] [PubMed]
  12. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [Crossref]
  13. C. Lecaplain, M. Baumgartl, T. Schreiber, and A. Hideur, “On the mode-locking mechanism of a dissipative- soliton fiber oscillator,” Opt. Express 19(27), 26742–26751 (2011).
    [Crossref] [PubMed]
  14. T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B 102(4), 743–750 (2011).
    [Crossref]
  15. L. J. Cooper, P. Wang, R. B. Williams, J. K. Sahu, W. A. Clarkson, A. M. Scott, and D. Jones, “High-power Yb-doped multicore ribbon fiber laser,” Opt. Lett. 30(21), 2906–2908 (2005).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (3)

2011 (4)

Z.-C. Luo, A.-P. Luo, and W.-C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

M. Zhang, E. J. R. Kelleher, A. S. Pozharov, E. D. Obraztsova, S. V. Popov, and J. R. Taylor, “Passive synchronization of all-fiber lasers through a common saturable absorber,” Opt. Lett. 36(20), 3984–3986 (2011).
[Crossref] [PubMed]

C. Lecaplain, M. Baumgartl, T. Schreiber, and A. Hideur, “On the mode-locking mechanism of a dissipative- soliton fiber oscillator,” Opt. Express 19(27), 26742–26751 (2011).
[Crossref] [PubMed]

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B 102(4), 743–750 (2011).
[Crossref]

2008 (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

2006 (2)

Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
[Crossref]

S. Pan and C. Lou, “Stable multiwavelength dispersion tuned actively mode-locked erbium doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

2005 (1)

2003 (1)

D. Pudo and L. R. Chen, “Actively modelocked, quadruple wavelength fibre laser with pump controlled wavelength switching,” Electron. Lett. 39(3), 272–274 (2003).
[Crossref]

2000 (1)

L. R. Chen, G. E. Town, P.-Y. Cortes, S. LaRochelle, and P. W. E. Smith, “Dual-wavelength actively modelocked fibre laser with 0.7 nm wavelength spacing,” Electron. Lett. 36(23), 1921–1923 (2000).
[Crossref]

Abramski, K. M.

Barthélémy, A.

Baumgartl, M.

Bigot, L.

Bouwmans, G.

Chen, L. R.

D. Pudo and L. R. Chen, “Actively modelocked, quadruple wavelength fibre laser with pump controlled wavelength switching,” Electron. Lett. 39(3), 272–274 (2003).
[Crossref]

L. R. Chen, G. E. Town, P.-Y. Cortes, S. LaRochelle, and P. W. E. Smith, “Dual-wavelength actively modelocked fibre laser with 0.7 nm wavelength spacing,” Electron. Lett. 36(23), 1921–1923 (2000).
[Crossref]

Chia, M. Y. W.

Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
[Crossref]

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Clarkson, W. A.

Cooper, L. J.

Cortes, P.-Y.

L. R. Chen, G. E. Town, P.-Y. Cortes, S. LaRochelle, and P. W. E. Smith, “Dual-wavelength actively modelocked fibre laser with 0.7 nm wavelength spacing,” Electron. Lett. 36(23), 1921–1923 (2000).
[Crossref]

Desfarges-Berthelemot, A.

Fallnich, C.

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B 102(4), 743–750 (2011).
[Crossref]

Gong, Y. D.

Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
[Crossref]

Gross, P.

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B 102(4), 743–750 (2011).
[Crossref]

Hideur, A.

Jones, D.

Kelleher, E. J. R.

Kermene, V.

Krajewska, A.

Labat, D.

LaRochelle, S.

L. R. Chen, G. E. Town, P.-Y. Cortes, S. LaRochelle, and P. W. E. Smith, “Dual-wavelength actively modelocked fibre laser with 0.7 nm wavelength spacing,” Electron. Lett. 36(23), 1921–1923 (2000).
[Crossref]

Le Rouge, A.

Lecaplain, C.

Li, X.

Löser, M.

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B 102(4), 743–750 (2011).
[Crossref]

Lou, C.

S. Pan and C. Lou, “Stable multiwavelength dispersion tuned actively mode-locked erbium doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

Luo, A.-P.

Z.-C. Luo, A.-P. Luo, and W.-C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Luo, Z.-C.

Z.-C. Luo, A.-P. Luo, and W.-C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Mansuryan, T.

Obraztsova, E. D.

Pan, S.

S. Pan and C. Lou, “Stable multiwavelength dispersion tuned actively mode-locked erbium doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

Pasternak, I.

Paulose, V.

Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
[Crossref]

Popov, S. V.

Pozharov, A. S.

Pudo, D.

D. Pudo and L. R. Chen, “Actively modelocked, quadruple wavelength fibre laser with pump controlled wavelength switching,” Electron. Lett. 39(3), 272–274 (2003).
[Crossref]

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Rigaud, P.

Sahu, J. K.

Schreiber, T.

Scott, A. M.

Shum, P.

Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
[Crossref]

Shum, P. P.

Smith, P. W. E.

L. R. Chen, G. E. Town, P.-Y. Cortes, S. LaRochelle, and P. W. E. Smith, “Dual-wavelength actively modelocked fibre laser with 0.7 nm wavelength spacing,” Electron. Lett. 36(23), 1921–1923 (2000).
[Crossref]

Sobon, G.

Sotor, J.

Strupinski, W.

Tang, M.

Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
[Crossref]

Tang, Y.

Tarka, J.

Taylor, J. R.

Tian, X. L.

Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
[Crossref]

Town, G. E.

L. R. Chen, G. E. Town, P.-Y. Cortes, S. LaRochelle, and P. W. E. Smith, “Dual-wavelength actively modelocked fibre laser with 0.7 nm wavelength spacing,” Electron. Lett. 36(23), 1921–1923 (2000).
[Crossref]

Walbaum, T.

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B 102(4), 743–750 (2011).
[Crossref]

Wang, P.

Wang, Q. J.

Williams, R. B.

Wise, F. W.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Wu, J.

Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
[Crossref]

Xu, K.

Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
[Crossref]

Xu, W.-C.

Z.-C. Luo, A.-P. Luo, and W.-C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Xu, Z. W.

Z. W. Xu and Z. X. Zhang, “All-normal dispersion multiwavelength dissipative soliton Yb-doped fiber laser,” Laser Phys. Lett. 10(8), 085105 (2013).
[Crossref]

Yan, Z.

Yu, X.

Zhang, M.

Zhang, Y.

Zhang, Z. X.

Z. W. Xu and Z. X. Zhang, “All-normal dispersion multiwavelength dissipative soliton Yb-doped fiber laser,” Laser Phys. Lett. 10(8), 085105 (2013).
[Crossref]

Appl. Phys. B (1)

T. Walbaum, M. Löser, P. Gross, and C. Fallnich, “Mechanisms in passive synchronization of erbium fiber lasers,” Appl. Phys. B 102(4), 743–750 (2011).
[Crossref]

Electron. Lett. (2)

L. R. Chen, G. E. Town, P.-Y. Cortes, S. LaRochelle, and P. W. E. Smith, “Dual-wavelength actively modelocked fibre laser with 0.7 nm wavelength spacing,” Electron. Lett. 36(23), 1921–1923 (2000).
[Crossref]

D. Pudo and L. R. Chen, “Actively modelocked, quadruple wavelength fibre laser with pump controlled wavelength switching,” Electron. Lett. 39(3), 272–274 (2003).
[Crossref]

IEEE Photonics J. (1)

Z.-C. Luo, A.-P. Luo, and W.-C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Pan and C. Lou, “Stable multiwavelength dispersion tuned actively mode-locked erbium doped fiber ring laser using nonlinear polarization rotation,” IEEE Photonics Technol. Lett. 18(13), 1451–1453 (2006).
[Crossref]

Laser Phys. Lett. (1)

Z. W. Xu and Z. X. Zhang, “All-normal dispersion multiwavelength dissipative soliton Yb-doped fiber laser,” Laser Phys. Lett. 10(8), 085105 (2013).
[Crossref]

Opt. Commun. (1)

Y. D. Gong, X. L. Tian, M. Tang, P. Shum, M. Y. W. Chia, V. Paulose, J. Wu, and K. Xu, “Generation of dual wavelength ultrashort pulse outputs from a passive mode-locked fiber ring laser,” Opt. Commun. 265(2), 628–631 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic drawing of the laser set-up based on an Ytterbium doped multicore optical fiber (Yb-MCF). The beams with different carrier wavelengths (in red and blue lines) are amplified in different cores of the array. They are spectrally combined in a single beam by the grating (G) before focusing on the saturable absorber mirror (SESAM). PH: pinhole, L: lens, MLA: microlens array, DM: dichroïc mirror (Rmax @ 1030 nm, Tmax @ 976 nm), RM: laser rear mirror.
Fig. 2
Fig. 2 Autocorrelation trace of the mode-locked fiber laser working on a single wavelength channel (black line) and fit for Gaussian pulses of 2.7 ps duration (red open dots).
Fig. 3
Fig. 3 Numerical simulations for 2 nm bandwidth spectral filter and intra-cavity pulse energy of 1.5 nJ: (a) pulse evolution along the unfolded cavity; (b) output pulse; (c) corresponding optical spectrum. HR: high-reflection mirror; SF: spectral filter; SA: saturable absorber.
Fig. 4
Fig. 4 Spectrum of the laser output in dual wavelength mode-locked regime.
Fig. 5
Fig. 5 Dual wavelength mode-locked laser output spectrum with separation in wavelength of 1.6, 2.5 and 5.6 nm from left to right.
Fig. 6
Fig. 6 Top - RF spectrum of the dual wavelength mode-locked laser after reduction of the differential cavity length by the fiber loop. A single narrow peak showed up at the common frequency with a width limited by the analyzer resolution (<10 kHz). Bottom - A single pulse train appeared on the scope displaying the signal from the photodiode.
Fig. 7
Fig. 7 Autocorrelation trace (black line) recorded in dual wavelength mode-locked operation. Carrier wavelengths were 1028.4 and 1031 nm as shown in the optical spectrum of Fig. 3. A theoretical curve is plot in red open circle considering perfect locking of the carrier envelope offset between the two elementary pulses (pulse duration 5ps, Δλ = 2.56nm, power ratio between channels of 2). Corresponding pulse profile is given in inset.

Metrics