Abstract

We have demonstrated a novel platform of quantum dots (QDs) core-shell conjugated graphene oxide (GO) biosensor for effective protein detection. The advantage in making core shell nanostructure allows preserving stable QDs, by improving quantum yield, and lowering the toxicity of the core. Both QDs and GO are efficient nanoparticle systems that can potentially be used for drug delivery, diagnosis, and biosensors scaffolds. However, our study indicates that the conjugation between these two nanoparticle systems makes their properties even more effective. The change in fluorescent intensity through fluorescence resonance energy transfer from quantum dots to GO produced a novel method for detection of the target and allows for the optimization of the recognition limit of Bovine serum albumin (BSA) due to efficient fluorescence resonance energy transfer as observed through time resolved relaxation spectroscopy. It is observed that the quenching of photoluminescence peak of QDs due to GO shell produced an applicable strategy and could be conveniently extended for detection of other biomolecules. We obtained significantly enhanced spectral signal through successful conjugation of GO with CdSe/CdS core shell, which can potentially be used for the detection of biomolecules with high sensitivity and selectivity. Our study underlines the efficiency of QD conjugated GO core shell in spectral detection of proteins even at very low concentration (0.25 mmol).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Immunosensing platform with large detection range using an excessively tilted fiber grating coated with graphene oxide

Binbin Luo, Huafeng Lu, Shenghui Shi, Jiao Lu, Mingfu Zhao, Shengxi Wu, Lingchen Li, Xin Wang, and Yajie Wang
Appl. Opt. 57(30) 8805-8810 (2018)

SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure

C Zhang, S Z Jiang, Y Y Huo, A H Liu, S C Xu, X Y Liu, Z C Sun, Y Y Xu, Z Li, and B Y Man
Opt. Express 23(19) 24811-24821 (2015)

Detection of Echinococcus granulosus antigen by a quantum dot/porous silicon optical biosensor

Yanyu Li, Zhenhong Jia, Guodong Lv, Hao Wen, Peng Li, Hongyan Zhang, and Jiajia Wang
Biomed. Opt. Express 8(7) 3458-3469 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
    [Crossref] [PubMed]
  2. F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
    [Crossref]
  3. A. Sahu, K. Dalal, S. Naglot, P. Aggarwal, and C. Murali Krishna, “Serum Based Diagnosis of Asthma Using Raman Spectroscopy: An Early Phase Pilot Study,” PLoS One 8(11), e78921 (2013).
    [Crossref] [PubMed]
  4. C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
    [Crossref] [PubMed]
  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  7. H. Shen, L. Zhang, M. Liu, and Z. Zhang, “Biomedical Applications of Graphene,” Theranostics 2(3), 283–294 (2012).
    [Crossref] [PubMed]
  8. G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5(4), 1353–1368 (2013).
    [Crossref] [PubMed]
  9. L. Tang, Y. Wang, and J. Li, “The graphene/nucleic acid nanobiointerface,” Chem. Soc. Rev. (2015) in press.
  10. H. Qiu, N. Wu, Y. Zheng, M. Chen, S. Weng, Y. Chen, and X. Lin, “A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide,” Int. J. Nanomedicine 10, 147–156 (2015).
    [PubMed]
  11. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
    [Crossref] [PubMed]
  12. R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
    [Crossref] [PubMed]
  13. H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, “Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules,” Anal. Chem. 82(13), 5511–5517 (2010).
    [Crossref] [PubMed]
  14. A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43(2), 190–200 (2010).
    [Crossref] [PubMed]
  15. W. Fritzsche and J. Popp, “Optical nano- and microsystems forbioanalytics series: springer series on chemical sensors and biosensors,” 10, XII, p-329 (Eds.) (2012).
  16. J. M. Reyes-Goddard, H. Barr, and N. Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
    [Crossref] [PubMed]
  17. S. Schlücker, Surface Enhanced Raman Spectroscopy: Analytical, Biophysicaland Life Science Applications (Wiley-VCH, 2011)
  18. Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based enhanced Raman Scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).
  19. S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
    [Crossref] [PubMed]
  20. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
    [Crossref] [PubMed]
  21. J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125(41), 12567–12575 (2003).
    [Crossref] [PubMed]
  22. O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
    [Crossref] [PubMed]
  23. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
    [Crossref]
  24. D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices,” J. Phys. Chem. Lett. 2(10), 1113–1118 (2011).
    [Crossref] [PubMed]
  25. Y. F. Chen, T. H. Ji, and Z. Rosenzweig, “Synthesis of Glyconanospheres Containing Luminescent CdSe−ZnS Quantum Dots,” Nano Lett. 3(5), 581–584 (2003).
    [Crossref]
  26. F. Hua, M. T. Swihart, and E. Ruckenstein, “Efficient Surface Grafting of Luminescent Silicon Quantum Dots by Photoinitiated Hydrosilylation,” Langmuir 21(13), 6054–6062 (2005).
    [Crossref] [PubMed]
  27. I. V. Lightcap and P. V. Kamat, “Fortification of CdSe Quantum Dots with graphene oxide. excited state interactions and light energy conversion,” J. Am. Chem. Soc. 134(16), 7109–7116 (2012).
    [Crossref] [PubMed]
  28. R. C. C. Leite and S. P. S. Porto, “Enhancement of Raman cross section in CdS due to resonant absorption,” Phys. Rev. Lett. 17(1), 10 (1966).
    [Crossref]
  29. S. Zou and M. J. Weaver, “Surface-enhanced Raman scattering of ultrathin cadmium chalcogenide films on gold formed by electrochemical atomic-layer epitaxy: thickness-dependent phonon characteristics,” J. Phys. Chem. B 103(13), 2323–2326 (1999).
    [Crossref]
  30. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8(1), 36–41 (2008).
    [Crossref] [PubMed]
  31. A. M. Bellocq, R. C. Lord, and R. Mendelsohn, “Laser-excited Raman Spectroscopy of biomolecules III. Native bovine serum albumin and beta-lactoglublin,” Biochim. Biophys. Acta 257(2), 280–287 (1972).
    [Crossref] [PubMed]
  32. P. C. Painter and J. L. Koenig, eds., “Handbook of Biochemistry and Molecular Biology, Proteins; Raman Spectroscopy of Polypeptides and Proteins,” Vol. III: pp 575–587 (1976).
  33. T. M. Herne, A. M. Ahern, and R. L. Garell, “Surface-enhanced Raman spectroscopy of peptides: preferential n-terminal adsorption on colloidal silver,” J. Am. Chem. Soc. 113(3), 846–854 (1991).
    [Crossref]
  34. Z. Chi, X. G. Chen, J. S. W. Holtz, and S. A. Asher, “UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure,” Biochemistry 37(9), 2854–2864 (1998).
    [Crossref] [PubMed]
  35. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
    [Crossref]
  36. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [Crossref]
  37. S. Stewart and P. M. Fredericks, “Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface,” Spectrochim Acta A 55(7-8), 1615–1640 (1999).
    [Crossref]
  38. Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, “Energy Transfer from Individual Semiconductor Nanocrystals to Graphene,” ACS Nano 4(5), 2964–2968 (2010).
    [Crossref] [PubMed]

2015 (1)

H. Qiu, N. Wu, Y. Zheng, M. Chen, S. Weng, Y. Chen, and X. Lin, “A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide,” Int. J. Nanomedicine 10, 147–156 (2015).
[PubMed]

2013 (3)

A. Sahu, K. Dalal, S. Naglot, P. Aggarwal, and C. Murali Krishna, “Serum Based Diagnosis of Asthma Using Raman Spectroscopy: An Early Phase Pilot Study,” PLoS One 8(11), e78921 (2013).
[Crossref] [PubMed]

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5(4), 1353–1368 (2013).
[Crossref] [PubMed]

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based enhanced Raman Scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).

2012 (3)

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

H. Shen, L. Zhang, M. Liu, and Z. Zhang, “Biomedical Applications of Graphene,” Theranostics 2(3), 283–294 (2012).
[Crossref] [PubMed]

I. V. Lightcap and P. V. Kamat, “Fortification of CdSe Quantum Dots with graphene oxide. excited state interactions and light energy conversion,” J. Am. Chem. Soc. 134(16), 7109–7116 (2012).
[Crossref] [PubMed]

2011 (1)

D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices,” J. Phys. Chem. Lett. 2(10), 1113–1118 (2011).
[Crossref] [PubMed]

2010 (5)

Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, “Energy Transfer from Individual Semiconductor Nanocrystals to Graphene,” ACS Nano 4(5), 2964–2968 (2010).
[Crossref] [PubMed]

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, “Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules,” Anal. Chem. 82(13), 5511–5517 (2010).
[Crossref] [PubMed]

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43(2), 190–200 (2010).
[Crossref] [PubMed]

2009 (2)

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
[Crossref] [PubMed]

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

2008 (2)

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8(1), 36–41 (2008).
[Crossref] [PubMed]

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

2007 (1)

D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
[Crossref] [PubMed]

2005 (4)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

J. M. Reyes-Goddard, H. Barr, and N. Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
[Crossref] [PubMed]

F. Hua, M. T. Swihart, and E. Ruckenstein, “Efficient Surface Grafting of Luminescent Silicon Quantum Dots by Photoinitiated Hydrosilylation,” Langmuir 21(13), 6054–6062 (2005).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2003 (2)

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125(41), 12567–12575 (2003).
[Crossref] [PubMed]

Y. F. Chen, T. H. Ji, and Z. Rosenzweig, “Synthesis of Glyconanospheres Containing Luminescent CdSe−ZnS Quantum Dots,” Nano Lett. 3(5), 581–584 (2003).
[Crossref]

1999 (2)

S. Zou and M. J. Weaver, “Surface-enhanced Raman scattering of ultrathin cadmium chalcogenide films on gold formed by electrochemical atomic-layer epitaxy: thickness-dependent phonon characteristics,” J. Phys. Chem. B 103(13), 2323–2326 (1999).
[Crossref]

S. Stewart and P. M. Fredericks, “Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface,” Spectrochim Acta A 55(7-8), 1615–1640 (1999).
[Crossref]

1998 (2)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Z. Chi, X. G. Chen, J. S. W. Holtz, and S. A. Asher, “UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure,” Biochemistry 37(9), 2854–2864 (1998).
[Crossref] [PubMed]

1991 (1)

T. M. Herne, A. M. Ahern, and R. L. Garell, “Surface-enhanced Raman spectroscopy of peptides: preferential n-terminal adsorption on colloidal silver,” J. Am. Chem. Soc. 113(3), 846–854 (1991).
[Crossref]

1982 (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

1972 (1)

A. M. Bellocq, R. C. Lord, and R. Mendelsohn, “Laser-excited Raman Spectroscopy of biomolecules III. Native bovine serum albumin and beta-lactoglublin,” Biochim. Biophys. Acta 257(2), 280–287 (1972).
[Crossref] [PubMed]

1966 (1)

R. C. C. Leite and S. P. S. Porto, “Enhancement of Raman cross section in CdS due to resonant absorption,” Phys. Rev. Lett. 17(1), 10 (1966).
[Crossref]

1958 (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Accardo, A.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Aggarwal, P.

A. Sahu, K. Dalal, S. Naglot, P. Aggarwal, and C. Murali Krishna, “Serum Based Diagnosis of Asthma Using Raman Spectroscopy: An Early Phase Pilot Study,” PLoS One 8(11), e78921 (2013).
[Crossref] [PubMed]

Ahern, A. M.

T. M. Herne, A. M. Ahern, and R. L. Garell, “Surface-enhanced Raman spectroscopy of peptides: preferential n-terminal adsorption on colloidal silver,” J. Am. Chem. Soc. 113(3), 846–854 (1991).
[Crossref]

Aksay, I. A.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8(1), 36–41 (2008).
[Crossref] [PubMed]

Asher, S. A.

Z. Chi, X. G. Chen, J. S. W. Holtz, and S. A. Asher, “UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure,” Biochemistry 37(9), 2854–2864 (1998).
[Crossref] [PubMed]

Barr, H.

J. M. Reyes-Goddard, H. Barr, and N. Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
[Crossref] [PubMed]

Bascands, J. L.

D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
[Crossref] [PubMed]

Bellocq, A. M.

A. M. Bellocq, R. C. Lord, and R. Mendelsohn, “Laser-excited Raman Spectroscopy of biomolecules III. Native bovine serum albumin and beta-lactoglublin,” Biochim. Biophys. Acta 257(2), 280–287 (1972).
[Crossref] [PubMed]

Berciaud, S.

Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, “Energy Transfer from Individual Semiconductor Nanocrystals to Graphene,” ACS Nano 4(5), 2964–2968 (2010).
[Crossref] [PubMed]

Brus, L. E.

Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, “Energy Transfer from Individual Semiconductor Nanocrystals to Graphene,” ACS Nano 4(5), 2964–2968 (2010).
[Crossref] [PubMed]

Cai, Z.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Candeloro, P.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Cao, A.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Cao, Y. C.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Car, R.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8(1), 36–41 (2008).
[Crossref] [PubMed]

Chang, Y.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Chen, G. N.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

Chen, J.

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5(4), 1353–1368 (2013).
[Crossref] [PubMed]

Chen, M.

H. Qiu, N. Wu, Y. Zheng, M. Chen, S. Weng, Y. Chen, and X. Lin, “A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide,” Int. J. Nanomedicine 10, 147–156 (2015).
[PubMed]

Chen, O.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Chen, X.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Chen, X. G.

Z. Chi, X. G. Chen, J. S. W. Holtz, and S. A. Asher, “UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure,” Biochemistry 37(9), 2854–2864 (1998).
[Crossref] [PubMed]

Chen, Y.

H. Qiu, N. Wu, Y. Zheng, M. Chen, S. Weng, Y. Chen, and X. Lin, “A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide,” Int. J. Nanomedicine 10, 147–156 (2015).
[PubMed]

Chen, Y. F.

Y. F. Chen, T. H. Ji, and Z. Rosenzweig, “Synthesis of Glyconanospheres Containing Luminescent CdSe−ZnS Quantum Dots,” Nano Lett. 3(5), 581–584 (2003).
[Crossref]

Chen, Z.

Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, “Energy Transfer from Individual Semiconductor Nanocrystals to Graphene,” ACS Nano 4(5), 2964–2968 (2010).
[Crossref] [PubMed]

Chi, Z.

Z. Chi, X. G. Chen, J. S. W. Holtz, and S. A. Asher, “UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure,” Biochemistry 37(9), 2854–2864 (1998).
[Crossref] [PubMed]

Chu, S.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Cojoc, G.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Coluccio, M. L.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Coon, J. J.

D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
[Crossref] [PubMed]

Dai, L.

D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices,” J. Phys. Chem. Lett. 2(10), 1113–1118 (2011).
[Crossref] [PubMed]

Dalal, K.

A. Sahu, K. Dalal, S. Naglot, P. Aggarwal, and C. Murali Krishna, “Serum Based Diagnosis of Asthma Using Raman Spectroscopy: An Early Phase Pilot Study,” PLoS One 8(11), e78921 (2013).
[Crossref] [PubMed]

Das, G.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

De Angelis, F.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Decuzzi, P.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Di Fabrizio, E.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Dominiczak, A.

D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
[Crossref] [PubMed]

Dong, H.

H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, “Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules,” Anal. Chem. 82(13), 5511–5517 (2010).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Durstock, M.

D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices,” J. Phys. Chem. Lett. 2(10), 1113–1118 (2011).
[Crossref] [PubMed]

Fan, C.

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fredericks, P. M.

S. Stewart and P. M. Fredericks, “Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface,” Spectrochim Acta A 55(7-8), 1615–1640 (1999).
[Crossref]

Gao, W.

H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, “Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules,” Anal. Chem. 82(13), 5511–5517 (2010).
[Crossref] [PubMed]

Garell, R. L.

T. M. Herne, A. M. Ahern, and R. L. Garell, “Surface-enhanced Raman spectroscopy of peptides: preferential n-terminal adsorption on colloidal silver,” J. Am. Chem. Soc. 113(3), 846–854 (1991).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gentile, F.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Goldman, E. R.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Gong, Q.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Good, D. M.

D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, W.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125(41), 12567–12575 (2003).
[Crossref] [PubMed]

Guo, Z.

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based enhanced Raman Scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).

He, S.

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

He, Y.

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

Heinz, T. F.

Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, “Energy Transfer from Individual Semiconductor Nanocrystals to Graphene,” ACS Nano 4(5), 2964–2968 (2010).
[Crossref] [PubMed]

Herne, T. M.

T. M. Herne, A. M. Ahern, and R. L. Garell, “Surface-enhanced Raman spectroscopy of peptides: preferential n-terminal adsorption on colloidal silver,” J. Am. Chem. Soc. 113(3), 846–854 (1991).
[Crossref]

Holtz, J. S. W.

Z. Chi, X. G. Chen, J. S. W. Holtz, and S. A. Asher, “UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure,” Biochemistry 37(9), 2854–2864 (1998).
[Crossref] [PubMed]

Hua, F.

F. Hua, M. T. Swihart, and E. Ruckenstein, “Efficient Surface Grafting of Luminescent Silicon Quantum Dots by Photoinitiated Hydrosilylation,” Langmuir 21(13), 6054–6062 (2005).
[Crossref] [PubMed]

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Ji, H.

H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, “Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules,” Anal. Chem. 82(13), 5511–5517 (2010).
[Crossref] [PubMed]

Ji, T. H.

Y. F. Chen, T. H. Ji, and Z. Rosenzweig, “Synthesis of Glyconanospheres Containing Luminescent CdSe−ZnS Quantum Dots,” Nano Lett. 3(5), 581–584 (2003).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Johnson, M. B.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125(41), 12567–12575 (2003).
[Crossref] [PubMed]

Ju, H.

H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, “Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules,” Anal. Chem. 82(13), 5511–5517 (2010).
[Crossref] [PubMed]

Kamat, P. V.

I. V. Lightcap and P. V. Kamat, “Fortification of CdSe Quantum Dots with graphene oxide. excited state interactions and light energy conversion,” J. Am. Chem. Soc. 134(16), 7109–7116 (2012).
[Crossref] [PubMed]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Keay, J. C.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125(41), 12567–12575 (2003).
[Crossref] [PubMed]

Kudin, K. N.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8(1), 36–41 (2008).
[Crossref] [PubMed]

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Leite, R. C. C.

R. C. C. Leite and S. P. S. Porto, “Enhancement of Raman cross section in CdS due to resonant absorption,” Phys. Rev. Lett. 17(1), 10 (1966).
[Crossref]

Li, J.

L. Tang, Y. Wang, and J. Li, “The graphene/nucleic acid nanobiointerface,” Chem. Soc. Rev. (2015) in press.

Li, J. J.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125(41), 12567–12575 (2003).
[Crossref] [PubMed]

Li, L.-J.

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

Liberale, C.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Lightcap, I. V.

I. V. Lightcap and P. V. Kamat, “Fortification of CdSe Quantum Dots with graphene oxide. excited state interactions and light energy conversion,” J. Am. Chem. Soc. 134(16), 7109–7116 (2012).
[Crossref] [PubMed]

Lin, X.

H. Qiu, N. Wu, Y. Zheng, M. Chen, S. Weng, Y. Chen, and X. Lin, “A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide,” Int. J. Nanomedicine 10, 147–156 (2015).
[PubMed]

Liu, K.-K.

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

Liu, M.

H. Shen, L. Zhang, M. Liu, and Z. Zhang, “Biomedical Applications of Graphene,” Theranostics 2(3), 283–294 (2012).
[Crossref] [PubMed]

Liu, Y.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based enhanced Raman Scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Lord, R. C.

A. M. Bellocq, R. C. Lord, and R. Mendelsohn, “Laser-excited Raman Spectroscopy of biomolecules III. Native bovine serum albumin and beta-lactoglublin,” Biochim. Biophys. Acta 257(2), 280–287 (1972).
[Crossref] [PubMed]

Lu, C. H.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

Lu, G.

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5(4), 1353–1368 (2013).
[Crossref] [PubMed]

Lynch, J.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Manso, M.

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
[Crossref] [PubMed]

Mao, X.

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

Martín-Palma, R. J.

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
[Crossref] [PubMed]

Mattoussi, H.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Mecarini, F.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Medintz, I. L.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Mendelsohn, R.

A. M. Bellocq, R. C. Lord, and R. Mendelsohn, “Laser-excited Raman Spectroscopy of biomolecules III. Native bovine serum albumin and beta-lactoglublin,” Biochim. Biophys. Acta 257(2), 280–287 (1972).
[Crossref] [PubMed]

Mischak, H.

D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
[Crossref] [PubMed]

Mishima, T. D.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125(41), 12567–12575 (2003).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Murali Krishna, C.

A. Sahu, K. Dalal, S. Naglot, P. Aggarwal, and C. Murali Krishna, “Serum Based Diagnosis of Asthma Using Raman Spectroscopy: An Early Phase Pilot Study,” PLoS One 8(11), e78921 (2013).
[Crossref] [PubMed]

Naglot, S.

A. Sahu, K. Dalal, S. Naglot, P. Aggarwal, and C. Murali Krishna, “Serum Based Diagnosis of Asthma Using Raman Spectroscopy: An Early Phase Pilot Study,” PLoS One 8(11), e78921 (2013).
[Crossref] [PubMed]

Nie, S.

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43(2), 190–200 (2010).
[Crossref] [PubMed]

Novak, J.

D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nuckolls, C.

Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, “Energy Transfer from Individual Semiconductor Nanocrystals to Graphene,” ACS Nano 4(5), 2964–2968 (2010).
[Crossref] [PubMed]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Ozbas, B.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8(1), 36–41 (2008).
[Crossref] [PubMed]

Park, K.

D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices,” J. Phys. Chem. Lett. 2(10), 1113–1118 (2011).
[Crossref] [PubMed]

Peng, X.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125(41), 12567–12575 (2003).
[Crossref] [PubMed]

Porto, S. P. S.

R. C. C. Leite and S. P. S. Porto, “Enhancement of Raman cross section in CdS due to resonant absorption,” Phys. Rev. Lett. 17(1), 10 (1966).
[Crossref]

Prud’homme, R. K.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8(1), 36–41 (2008).
[Crossref] [PubMed]

Qin, X.

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based enhanced Raman Scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).

Qiu, H.

H. Qiu, N. Wu, Y. Zheng, M. Chen, S. Weng, Y. Chen, and X. Lin, “A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide,” Int. J. Nanomedicine 10, 147–156 (2015).
[PubMed]

Reyes-Goddard, J. M.

J. M. Reyes-Goddard, H. Barr, and N. Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
[Crossref] [PubMed]

Rosenzweig, Z.

Y. F. Chen, T. H. Ji, and Z. Rosenzweig, “Synthesis of Glyconanospheres Containing Luminescent CdSe−ZnS Quantum Dots,” Nano Lett. 3(5), 581–584 (2003).
[Crossref]

Ruckenstein, E.

F. Hua, M. T. Swihart, and E. Ruckenstein, “Efficient Surface Grafting of Luminescent Silicon Quantum Dots by Photoinitiated Hydrosilylation,” Langmuir 21(13), 6054–6062 (2005).
[Crossref] [PubMed]

Sahu, A.

A. Sahu, K. Dalal, S. Naglot, P. Aggarwal, and C. Murali Krishna, “Serum Based Diagnosis of Asthma Using Raman Spectroscopy: An Early Phase Pilot Study,” PLoS One 8(11), e78921 (2013).
[Crossref] [PubMed]

Schanstra, J. P.

D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
[Crossref] [PubMed]

Schniepp, H. C.

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8(1), 36–41 (2008).
[Crossref] [PubMed]

Shen, H.

H. Shen, L. Zhang, M. Liu, and Z. Zhang, “Biomedical Applications of Graphene,” Theranostics 2(3), 283–294 (2012).
[Crossref] [PubMed]

Smith, A. M.

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43(2), 190–200 (2010).
[Crossref] [PubMed]

Song, S.

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

Stewart, S.

S. Stewart and P. M. Fredericks, “Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface,” Spectrochim Acta A 55(7-8), 1615–1640 (1999).
[Crossref]

Stone, N.

J. M. Reyes-Goddard, H. Barr, and N. Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
[Crossref] [PubMed]

Su, S.

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

Swihart, M. T.

F. Hua, M. T. Swihart, and E. Ruckenstein, “Efficient Surface Grafting of Luminescent Silicon Quantum Dots by Photoinitiated Hydrosilylation,” Langmuir 21(13), 6054–6062 (2005).
[Crossref] [PubMed]

Tallerico, R.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Tang, L.

L. Tang, Y. Wang, and J. Li, “The graphene/nucleic acid nanobiointerface,” Chem. Soc. Rev. (2015) in press.

Thongboonkerd, V.

D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
[Crossref] [PubMed]

Tirinato, L.

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Torres-Costa, V.

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
[Crossref] [PubMed]

Uyeda, H. T.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Wan, M.

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based enhanced Raman Scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).

Wang, D.

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

Wang, S.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Wang, Y.

L. Tang, Y. Wang, and J. Li, “The graphene/nucleic acid nanobiointerface,” Chem. Soc. Rev. (2015) in press.

Wang, Y. A.

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125(41), 12567–12575 (2003).
[Crossref] [PubMed]

Weaver, M. J.

S. Zou and M. J. Weaver, “Surface-enhanced Raman scattering of ultrathin cadmium chalcogenide films on gold formed by electrochemical atomic-layer epitaxy: thickness-dependent phonon characteristics,” J. Phys. Chem. B 103(13), 2323–2326 (1999).
[Crossref]

Wen, Z.

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5(4), 1353–1368 (2013).
[Crossref] [PubMed]

Weng, S.

H. Qiu, N. Wu, Y. Zheng, M. Chen, S. Weng, Y. Chen, and X. Lin, “A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide,” Int. J. Nanomedicine 10, 147–156 (2015).
[PubMed]

Wu, H.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Wu, M.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Wu, N.

H. Qiu, N. Wu, Y. Zheng, M. Chen, S. Weng, Y. Chen, and X. Lin, “A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide,” Int. J. Nanomedicine 10, 147–156 (2015).
[PubMed]

Yan, F.

H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, “Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules,” Anal. Chem. 82(13), 5511–5517 (2010).
[Crossref] [PubMed]

Yan, J.

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

Yang, B.

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based enhanced Raman Scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).

Yang, H. H.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

Yang, Y.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Ye, Z.

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Yu, D.

D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices,” J. Phys. Chem. Lett. 2(10), 1113–1118 (2011).
[Crossref] [PubMed]

Yu, K.

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5(4), 1353–1368 (2013).
[Crossref] [PubMed]

Zhang, L.

H. Shen, L. Zhang, M. Liu, and Z. Zhang, “Biomedical Applications of Graphene,” Theranostics 2(3), 283–294 (2012).
[Crossref] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z.

H. Shen, L. Zhang, M. Liu, and Z. Zhang, “Biomedical Applications of Graphene,” Theranostics 2(3), 283–294 (2012).
[Crossref] [PubMed]

Zheng, Y.

H. Qiu, N. Wu, Y. Zheng, M. Chen, S. Weng, Y. Chen, and X. Lin, “A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide,” Int. J. Nanomedicine 10, 147–156 (2015).
[PubMed]

Zhong, H.

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based enhanced Raman Scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).

Zhu, C. L.

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

Zhuang, J.

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Zou, S.

S. Zou and M. J. Weaver, “Surface-enhanced Raman scattering of ultrathin cadmium chalcogenide films on gold formed by electrochemical atomic-layer epitaxy: thickness-dependent phonon characteristics,” J. Phys. Chem. B 103(13), 2323–2326 (1999).
[Crossref]

Acc. Chem. Res. (1)

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43(2), 190–200 (2010).
[Crossref] [PubMed]

ACS Nano (1)

Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, and L. E. Brus, “Energy Transfer from Individual Semiconductor Nanocrystals to Graphene,” ACS Nano 4(5), 2964–2968 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Adv. Mater. 22(1), 103–106 (2010).
[Crossref] [PubMed]

Anal. Chem. (2)

S. He, K.-K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.-J. Li, S. Song, and C. Fan, “Graphene-Based High-Efficiency Surface-Enhanced Raman Scattering-Active Platform for Sensitive and Multiplex DNA Detection,” Anal. Chem. 84(10), 4622–4627 (2012).
[Crossref] [PubMed]

H. Dong, W. Gao, F. Yan, H. Ji, and H. Ju, “Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules,” Anal. Chem. 82(13), 5511–5517 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, and G. N. Chen, “A graphene platform for sensing biomolecules,” Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009).
[Crossref] [PubMed]

O. Chen, X. Chen, Y. Yang, J. Lynch, H. Wu, J. Zhuang, and Y. C. Cao, “Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor,” Angew. Chem. Int. Ed. Engl. 47(45), 8638–8641 (2008).
[Crossref] [PubMed]

Biochemistry (1)

Z. Chi, X. G. Chen, J. S. W. Holtz, and S. A. Asher, “UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure,” Biochemistry 37(9), 2854–2864 (1998).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

A. M. Bellocq, R. C. Lord, and R. Mendelsohn, “Laser-excited Raman Spectroscopy of biomolecules III. Native bovine serum albumin and beta-lactoglublin,” Biochim. Biophys. Acta 257(2), 280–287 (1972).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Int. J. Nanomedicine (1)

H. Qiu, N. Wu, Y. Zheng, M. Chen, S. Weng, Y. Chen, and X. Lin, “A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide,” Int. J. Nanomedicine 10, 147–156 (2015).
[PubMed]

J. Am. Chem. Soc. (4)

I. V. Lightcap and P. V. Kamat, “Fortification of CdSe Quantum Dots with graphene oxide. excited state interactions and light energy conversion,” J. Am. Chem. Soc. 134(16), 7109–7116 (2012).
[Crossref] [PubMed]

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, and X. Peng, “Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction,” J. Am. Chem. Soc. 125(41), 12567–12575 (2003).
[Crossref] [PubMed]

T. M. Herne, A. M. Ahern, and R. L. Garell, “Surface-enhanced Raman spectroscopy of peptides: preferential n-terminal adsorption on colloidal silver,” J. Am. Chem. Soc. 113(3), 846–854 (1991).
[Crossref]

J. Phys. Chem. (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

J. Phys. Chem. B (1)

S. Zou and M. J. Weaver, “Surface-enhanced Raman scattering of ultrathin cadmium chalcogenide films on gold formed by electrochemical atomic-layer epitaxy: thickness-dependent phonon characteristics,” J. Phys. Chem. B 103(13), 2323–2326 (1999).
[Crossref]

J. Phys. Chem. Lett. (1)

D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices,” J. Phys. Chem. Lett. 2(10), 1113–1118 (2011).
[Crossref] [PubMed]

J. Proteome Res. (1)

D. M. Good, V. Thongboonkerd, J. Novak, J. L. Bascands, J. P. Schanstra, J. J. Coon, A. Dominiczak, and H. Mischak, “Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future,” J. Proteome Res. 6(12), 4549–4555 (2007).
[Crossref] [PubMed]

Langmuir (1)

F. Hua, M. T. Swihart, and E. Ruckenstein, “Efficient Surface Grafting of Luminescent Silicon Quantum Dots by Photoinitiated Hydrosilylation,” Langmuir 21(13), 6054–6062 (2005).
[Crossref] [PubMed]

Microelectron. Eng. (1)

F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, L. Tirinato, R. Tallerico, G. Cojoc, C. Liberale, P. Candeloro, P. Decuzzi, F. De Angelis, and E. Di Fabrizio, “Ultra lowconcentrated molecular detection using super hydrophobic surface based biophotonicdevices,” Microelectron. Eng. 87(5-8), 798–801 (2010).
[Crossref]

Nano Lett. (2)

Y. F. Chen, T. H. Ji, and Z. Rosenzweig, “Synthesis of Glyconanospheres Containing Luminescent CdSe−ZnS Quantum Dots,” Nano Lett. 3(5), 581–584 (2003).
[Crossref]

K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8(1), 36–41 (2008).
[Crossref] [PubMed]

Nanoscale (1)

G. Lu, K. Yu, Z. Wen, and J. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale 5(4), 1353–1368 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Nature (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Photodiagn. Photodyn. Ther. (1)

J. M. Reyes-Goddard, H. Barr, and N. Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, “Graphene oxide based enhanced Raman Scattering probes for cancer cell imaging,” Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013).

Phys. Rev. Lett. (1)

R. C. C. Leite and S. P. S. Porto, “Enhancement of Raman cross section in CdS due to resonant absorption,” Phys. Rev. Lett. 17(1), 10 (1966).
[Crossref]

PLoS One (1)

A. Sahu, K. Dalal, S. Naglot, P. Aggarwal, and C. Murali Krishna, “Serum Based Diagnosis of Asthma Using Raman Spectroscopy: An Early Phase Pilot Study,” PLoS One 8(11), e78921 (2013).
[Crossref] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Sensors (Basel) (1)

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel) 9(7), 5149–5172 (2009).
[Crossref] [PubMed]

Spectrochim Acta A (1)

S. Stewart and P. M. Fredericks, “Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface,” Spectrochim Acta A 55(7-8), 1615–1640 (1999).
[Crossref]

Theranostics (1)

H. Shen, L. Zhang, M. Liu, and Z. Zhang, “Biomedical Applications of Graphene,” Theranostics 2(3), 283–294 (2012).
[Crossref] [PubMed]

Other (4)

L. Tang, Y. Wang, and J. Li, “The graphene/nucleic acid nanobiointerface,” Chem. Soc. Rev. (2015) in press.

W. Fritzsche and J. Popp, “Optical nano- and microsystems forbioanalytics series: springer series on chemical sensors and biosensors,” 10, XII, p-329 (Eds.) (2012).

S. Schlücker, Surface Enhanced Raman Spectroscopy: Analytical, Biophysicaland Life Science Applications (Wiley-VCH, 2011)

P. C. Painter and J. L. Koenig, eds., “Handbook of Biochemistry and Molecular Biology, Proteins; Raman Spectroscopy of Polypeptides and Proteins,” Vol. III: pp 575–587 (1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a)-1(i) shows the schematic diagram for protein detection technique using FRET mechanism. Figure 1(a) to 1(c) represents the image of nano-crystals of CdSe, CdSe coated with CdS QDs and its sharp PL obtained from the core shell of CdSe/CdS QDs, respectively. Figure 1(d) and 1(e) show the conjugation of core shell with GO as a result of quenching of the PL peak observed due to strong absorption of GO towards the excited light source (Fig. 1(f)). Figure 1(g) represents the distribution of core shell conjugated GO onto the Si substrate with illumination of laser source. Fig. 1(g)-1(h) signify the photo-excited fluorescent energy that is transferred from CdSe/CdS QDs to GO suffering from the quenching of PL through FRET, and consequently enhancing the imaging of biomolecules, such as BSA.
Fig. 2
Fig. 2 (a) FESEM image of GO-PSS, (b) QD-conjugate-GO-PSS, (c) -(d) TEM images of GO-PSS.
Fig. 3
Fig. 3 (a) TEM image of CdSe/CdS (Inset shows high magnification), (b) TEM image of QD conjugated GO-PSS, (c) TEM image of QD conjugated GO-PSS, (d) TEM image of QD conjugated GO-PSS 5nm magnification.
Fig. 4
Fig. 4 The UV-VIS absorption Spectra of CdSe, CdSe-CdS and core shell conjugated GO-PSS. Insertion: photograph of respective solution.
Fig. 5
Fig. 5 (a) The PL spectra of CdSe, CdSe/CdS and CdSe/CdS conjugated GO, (b) Schematic PL spectra of core shell QDs, (c) Initial illumination of CdSe/CdS conjugated GO leads to electron transfer from core shell conduction band to GO.
Fig. 6
Fig. 6 (a) The Raman Spectra of CdSe/CdS core shell on a silicon substrate, (b) Raman Spectra of Graphene oxide.
Fig. 7
Fig. 7 The Raman spectra of core shell with 1mM BSA, core shell conjugate GO-0.25 and 1mM BSA.
Fig. 8
Fig. 8 Photoluminescence lifetimes of Core shell and Core shell conjugated GO .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

CdS / CdSe  = h ϑ CdS / CdSe  ( e + h )   ..
CdS / CdSe ( e ) + GO  CdS / CdSe  + GO ( reduced )   ..
CdS / CdSe ( e ) + GO  ( R ) CdSe  + GO ( R ) ( e )   ..

Metrics