Abstract

Avalanche photodiodes (APDs) are the preferred photodetectors for direct-detection, high data-rate long-haul optical telecommunications. APDs can detect low-level optical signals due to their internal amplification of the photon-generated electrical current, which is attributable to the avalanche of electron and hole impact ionizations. Despite recent advances in APDs aimed at reducing the average avalanche-buildup time, which causes intersymbol interference and compromises receiver sensitivity at high data rates, operable speeds of commercially available APDs have been limited to 10Gbps. We report the first demonstration of a dynamically biased APD that breaks the traditional sensitivity-versus-speed limit by employing a data-synchronous sinusoidal reverse-bias that drastically suppresses the average avalanche-buildup time. Compared with traditional DC biasing, the sensitivity of germanium APDs at 3Gbps is improved by 4.3 dB, which is equivalent to a 3,500-fold reduction in the bit-error rate. The method is APD-type agnostic and it promises to enable operation at rates of 25Gbps and beyond.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product

Majeed M. Hayat and David A. Ramirez
Opt. Express 20(7) 8024-8040 (2012)

25  Gbps low-voltage waveguide Si–Ge avalanche photodiode

Zhihong Huang, Cheng Li, Di Liang, Kunzhi Yu, Charles Santori, Marco Fiorentino, Wayne Sorin, Samuel Palermo, and Raymond G. Beausoleil
Optica 3(8) 793-798 (2016)

InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product

Shiyu Xie, Xinxin Zhou, Shiyong Zhang, David J. Thomson, Xia Chen, Graham T. Reed, Jo Shien Ng, and Chee Hing Tan
Opt. Express 24(21) 24242-24247 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
    [Crossref]
  2. G. P. Agrawal, [Optical Receivers] Fiber-Optic Communication Systems (Wiley, 2010).
  3. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).
  4. R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
    [Crossref]
  5. M. M. Hayat and B. E. A. Saleh, “Statistical properties of the impulse response function of double carrier multiplication avalanche photodiodes including the effect of dead space,” J. Lightwave Technol. 10(10), 1415–1425 (1992).
    [Crossref]
  6. M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 4037–4039 (2002).
    [Crossref]
  7. S. D. Personick, “Receiver design for digital fiber-optic communication systems, Parts I and II,” Bell Syst. Tech. J. 52(6), 843–874 (1973).
    [Crossref]
  8. M. M. Hayat, B. E. A. Saleh, and J. A. Gubner, “Bit-error rates for optical receivers using avalanche photodiodes with dead space,” IEEE Trans. Commun. 43(1), 99–106 (1995).
    [Crossref]
  9. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
    [Crossref] [PubMed]
  10. Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
    [Crossref]
  11. N. Yasuoka, H. Kuwatsuka, and A. Kuramata, “A. High-speed and high-efficiency InP/InGaAs waveguide avalanche photodiodes for 40 Gbit/s transmission systems,” Proc. Optical Fiber Communication Conf. (Optical Society of America) 1 (2004).
  12. S. Shimizu, K. Shiba, T. Nakata, K. Kasahara, and K. Makita, “40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer,” Electron. Lett. 43(8), 476–477 (2007).
    [Crossref]
  13. M. Nada, H. Yokoyama, Y. Muramoto, T. Ishibashi, and H. Matsuzaki, “50-Gbit/s vertical illumination avalanche photodiode for 400-Gbit/s Ethernet systems,” Opt. Express 22(12), 14681–14687 (2014).
    [Crossref] [PubMed]
  14. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
    [Crossref] [PubMed]
  15. Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication conference/National Fiber Optic Engineers Conference (2011).
    [Crossref]
  16. G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55 mm with a gain–bandwidth product of 320 GHz,” IEEE Photonics Technol. Lett. 13(8), 842–844 (2001).
    [Crossref]
  17. C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz,” IEEE Photonics Technol. Lett. 11(9), 1162–1164 (1999).
    [Crossref]
  18. W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).
  19. D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
    [Crossref]
  20. N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
    [Crossref]
  21. E. Yagyu, E. Amagasaki Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. Opt. Fiber Commun. 2007, 145–147 (2007).
  22. A. Rouvie, M. D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
    [Crossref]
  23. K. Makita, T. Nakata, I. Watanabe, and K. Taguchi, “High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes,” Electron. Lett. 35(25), 2228–2229 (1999).
    [Crossref]
  24. G. El-howayek and M. M. Hayat, “Error probabilities for optical receivers that employ dynamically biased avalanche photodiodes,” IEEE Trans. Commun.in press.
  25. A. J. Price, “Avalanche photodiode apparatus biased with a modulating power signal,” U.S. Patent US 5721424 A, 1998.
  26. M. M. Hayat and D. A. Ramirez, “Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product,” Opt. Express 20(7), 8024–8040 (2012).
    [Crossref] [PubMed]
  27. M. M. Hayat, J. P. R. David, S. Krishna, L. F. Lester, and D. A. Ramirez, “Impact ionization devices under dynamic electric fields,” U.S. Patent Application 13/289,645, November 04 (2011), pending.
  28. P. Zarkesh-Ha and M. M. Hayat, “Resonance avalanche photodiodes for dynamic biasing,” U.S. Patent Application No. 62/002,352, May (2015), pending.
  29. D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. P. R. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightwave Technol. 27(15), 3294–3302 (2009).
    [Crossref]
  30. T. P. Pearsall, H. Temkyn, J. C. Bean, and S. Luryi, “Avalanche gain in GeSi/Si infrared waveguide detectors,” Electron. Device Lett. 7(5), 330–332 (1986).
    [Crossref]
  31. H. Ando, H. Kanbe, T. Kimura, T. Yamaoka, and T. Kaneda, “Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 μm,” J. Quantum Electron. 14(11), 804–809 (1978).
    [Crossref]
  32. G. El-Howayek, Communication-Theoretic Foundations for Optical Receivers Using Dynamically Biased Avalanche Photodiodes. Ph.D. Dissertation, University of New Mexico, Albuquerque, New Mexico, December (2014).

2014 (1)

2012 (1)

2010 (1)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

2009 (3)

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. P. R. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightwave Technol. 27(15), 3294–3302 (2009).
[Crossref]

2008 (1)

A. Rouvie, M. D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

2007 (2)

S. Shimizu, K. Shiba, T. Nakata, K. Kasahara, and K. Makita, “40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer,” Electron. Lett. 43(8), 476–477 (2007).
[Crossref]

E. Yagyu, E. Amagasaki Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. Opt. Fiber Commun. 2007, 145–147 (2007).

2005 (1)

D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
[Crossref]

2004 (1)

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

2003 (1)

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

2002 (1)

M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 4037–4039 (2002).
[Crossref]

2001 (1)

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55 mm with a gain–bandwidth product of 320 GHz,” IEEE Photonics Technol. Lett. 13(8), 842–844 (2001).
[Crossref]

1999 (3)

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz,” IEEE Photonics Technol. Lett. 11(9), 1162–1164 (1999).
[Crossref]

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).

K. Makita, T. Nakata, I. Watanabe, and K. Taguchi, “High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes,” Electron. Lett. 35(25), 2228–2229 (1999).
[Crossref]

1995 (1)

M. M. Hayat, B. E. A. Saleh, and J. A. Gubner, “Bit-error rates for optical receivers using avalanche photodiodes with dead space,” IEEE Trans. Commun. 43(1), 99–106 (1995).
[Crossref]

1992 (1)

M. M. Hayat and B. E. A. Saleh, “Statistical properties of the impulse response function of double carrier multiplication avalanche photodiodes including the effect of dead space,” J. Lightwave Technol. 10(10), 1415–1425 (1992).
[Crossref]

1986 (1)

T. P. Pearsall, H. Temkyn, J. C. Bean, and S. Luryi, “Avalanche gain in GeSi/Si infrared waveguide detectors,” Electron. Device Lett. 7(5), 330–332 (1986).
[Crossref]

1978 (1)

H. Ando, H. Kanbe, T. Kimura, T. Yamaoka, and T. Kaneda, “Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 μm,” J. Quantum Electron. 14(11), 804–809 (1978).
[Crossref]

1973 (1)

S. D. Personick, “Receiver design for digital fiber-optic communication systems, Parts I and II,” Bell Syst. Tech. J. 52(6), 843–874 (1973).
[Crossref]

1967 (1)

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[Crossref]

Achouche, M.

A. Rouvie, M. D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Amagasaki Ishimura, E.

E. Yagyu, E. Amagasaki Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. Opt. Fiber Commun. 2007, 145–147 (2007).

Ando, H.

H. Ando, H. Kanbe, T. Kimura, T. Yamaoka, and T. Kaneda, “Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 μm,” J. Quantum Electron. 14(11), 804–809 (1978).
[Crossref]

Aoyagi, T.

E. Yagyu, E. Amagasaki Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. Opt. Fiber Commun. 2007, 145–147 (2007).

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Bean, J. C.

T. P. Pearsall, H. Temkyn, J. C. Bean, and S. Luryi, “Avalanche gain in GeSi/Si infrared waveguide detectors,” Electron. Device Lett. 7(5), 330–332 (1986).
[Crossref]

Beck, A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Beck, J. D.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Beling, A.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Bowers, J.

Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication conference/National Fiber Optic Engineers Conference (2011).
[Crossref]

Bowers, J. E.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Campbell, J.

Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication conference/National Fiber Optic Engineers Conference (2011).
[Crossref]

Campbell, J. C.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 4037–4039 (2002).
[Crossref]

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55 mm with a gain–bandwidth product of 320 GHz,” IEEE Photonics Technol. Lett. 13(8), 842–844 (2001).
[Crossref]

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz,” IEEE Photonics Technol. Lett. 11(9), 1162–1164 (1999).
[Crossref]

Carpentier, M. D.

A. Rouvie, M. D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Chen, H. W.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Chen, H.-W.

Clark, W. R.

D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
[Crossref]

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).

Coldren, L. A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Dauplaise, H. M.

D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
[Crossref]

David, J. P. R.

Decobert, J.

A. Rouvie, M. D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Demiguel, S.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

Dentai, A. G.

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55 mm with a gain–bandwidth product of 320 GHz,” IEEE Photonics Technol. Lett. 13(8), 842–844 (2001).
[Crossref]

El-howayek, G.

G. El-howayek and M. M. Hayat, “Error probabilities for optical receivers that employ dynamically biased avalanche photodiodes,” IEEE Trans. Commun.in press.

Emmons, R. B.

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[Crossref]

Franco, D. S.

D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
[Crossref]

Gubner, J. A.

M. M. Hayat, B. E. A. Saleh, and J. A. Gubner, “Bit-error rates for optical receivers using avalanche photodiodes with dead space,” IEEE Trans. Commun. 43(1), 99–106 (1995).
[Crossref]

Guo, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Hayat, M. M.

M. M. Hayat and D. A. Ramirez, “Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product,” Opt. Express 20(7), 8024–8040 (2012).
[Crossref] [PubMed]

D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. P. R. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightwave Technol. 27(15), 3294–3302 (2009).
[Crossref]

M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 4037–4039 (2002).
[Crossref]

M. M. Hayat, B. E. A. Saleh, and J. A. Gubner, “Bit-error rates for optical receivers using avalanche photodiodes with dead space,” IEEE Trans. Commun. 43(1), 99–106 (1995).
[Crossref]

M. M. Hayat and B. E. A. Saleh, “Statistical properties of the impulse response function of double carrier multiplication avalanche photodiodes including the effect of dead space,” J. Lightwave Technol. 10(10), 1415–1425 (1992).
[Crossref]

G. El-howayek and M. M. Hayat, “Error probabilities for optical receivers that employ dynamically biased avalanche photodiodes,” IEEE Trans. Commun.in press.

Holmes, A. L.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz,” IEEE Photonics Technol. Lett. 11(9), 1162–1164 (1999).
[Crossref]

Huang, Z.

Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication conference/National Fiber Optic Engineers Conference (2011).
[Crossref]

Huntington, A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Ishibashi, T.

Itamoto, H.

E. Yagyu, E. Amagasaki Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. Opt. Fiber Commun. 2007, 145–147 (2007).

Jamroz, E.

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).

Jatar, S.

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).

Kanbe, H.

H. Ando, H. Kanbe, T. Kimura, T. Yamaoka, and T. Kaneda, “Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 μm,” J. Quantum Electron. 14(11), 804–809 (1978).
[Crossref]

Kaneda, T.

H. Ando, H. Kanbe, T. Kimura, T. Yamaoka, and T. Kaneda, “Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 μm,” J. Quantum Electron. 14(11), 804–809 (1978).
[Crossref]

Kang, Y.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication conference/National Fiber Optic Engineers Conference (2011).
[Crossref]

Kang, Y. M.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Karve, G.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

Kasahara, K.

S. Shimizu, K. Shiba, T. Nakata, K. Kasahara, and K. Makita, “40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer,” Electron. Lett. 43(8), 476–477 (2007).
[Crossref]

Kim, H.

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).

Kimura, T.

H. Ando, H. Kanbe, T. Kimura, T. Yamaoka, and T. Kaneda, “Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 μm,” J. Quantum Electron. 14(11), 804–809 (1978).
[Crossref]

Kinch, M. A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Kinsey, G.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz,” IEEE Photonics Technol. Lett. 11(9), 1162–1164 (1999).
[Crossref]

Kinsey, G. S.

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55 mm with a gain–bandwidth product of 320 GHz,” IEEE Photonics Technol. Lett. 13(8), 842–844 (2001).
[Crossref]

Knight, G.

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).

Krejca, B.

D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
[Crossref]

Kuo, Y. H.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Kwon, O.-H.

M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 4037–4039 (2002).
[Crossref]

Lagay, N.

A. Rouvie, M. D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Lenox, C.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz,” IEEE Photonics Technol. Lett. 11(9), 1162–1164 (1999).
[Crossref]

Li, N.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

Li, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

Litski, S.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Liu, H. D.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Lorenzo, J.

D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
[Crossref]

Luryi, S.

T. P. Pearsall, H. Temkyn, J. C. Bean, and S. Luryi, “Avalanche gain in GeSi/Si infrared waveguide detectors,” Electron. Device Lett. 7(5), 330–332 (1986).
[Crossref]

Ma, F.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

Makita, K.

S. Shimizu, K. Shiba, T. Nakata, K. Kasahara, and K. Makita, “40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer,” Electron. Lett. 43(8), 476–477 (2007).
[Crossref]

K. Makita, T. Nakata, I. Watanabe, and K. Taguchi, “High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes,” Electron. Lett. 35(25), 2228–2229 (1999).
[Crossref]

Margittai, A.

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).

Matsuzaki, H.

McIntosh, D. C.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Morse, M.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Muramoto, Y.

Nada, M.

Nakaji, M.

E. Yagyu, E. Amagasaki Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. Opt. Fiber Commun. 2007, 145–147 (2007).

Nakata, T.

S. Shimizu, K. Shiba, T. Nakata, K. Kasahara, and K. Makita, “40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer,” Electron. Lett. 43(8), 476–477 (2007).
[Crossref]

K. Makita, T. Nakata, I. Watanabe, and K. Taguchi, “High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes,” Electron. Lett. 35(25), 2228–2229 (1999).
[Crossref]

Ng, J. S.

Nie, H.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz,” IEEE Photonics Technol. Lett. 11(9), 1162–1164 (1999).
[Crossref]

Noel, J.-P.

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).

Ong, D. S. G.

Pan, Y.

M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 4037–4039 (2002).
[Crossref]

Paniccia, M. J.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication conference/National Fiber Optic Engineers Conference (2011).
[Crossref]

Pauchard, A.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication conference/National Fiber Optic Engineers Conference (2011).
[Crossref]

Pearsall, T. P.

T. P. Pearsall, H. Temkyn, J. C. Bean, and S. Luryi, “Avalanche gain in GeSi/Si infrared waveguide detectors,” Electron. Device Lett. 7(5), 330–332 (1986).
[Crossref]

Personick, S. D.

S. D. Personick, “Receiver design for digital fiber-optic communication systems, Parts I and II,” Bell Syst. Tech. J. 52(6), 843–874 (1973).
[Crossref]

Pommereau, F.

A. Rouvie, M. D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Ramirez, D. A.

Roland, M.

D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
[Crossref]

Rouvie, A.

A. Rouvie, M. D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

Saado, Y.

Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication conference/National Fiber Optic Engineers Conference (2011).
[Crossref]

Saleh, B. E. A.

M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 4037–4039 (2002).
[Crossref]

M. M. Hayat, B. E. A. Saleh, and J. A. Gubner, “Bit-error rates for optical receivers using avalanche photodiodes with dead space,” IEEE Trans. Commun. 43(1), 99–106 (1995).
[Crossref]

M. M. Hayat and B. E. A. Saleh, “Statistical properties of the impulse response function of double carrier multiplication avalanche photodiodes including the effect of dead space,” J. Lightwave Technol. 10(10), 1415–1425 (1992).
[Crossref]

Sarid, G.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Shiba, K.

S. Shimizu, K. Shiba, T. Nakata, K. Kasahara, and K. Makita, “40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer,” Electron. Lett. 43(8), 476–477 (2007).
[Crossref]

Shimizu, S.

S. Shimizu, K. Shiba, T. Nakata, K. Kasahara, and K. Makita, “40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer,” Electron. Lett. 43(8), 476–477 (2007).
[Crossref]

Sidhu, R.

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

Sotirelis, P.

M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 4037–4039 (2002).
[Crossref]

Streetman, B. G.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz,” IEEE Photonics Technol. Lett. 11(9), 1162–1164 (1999).
[Crossref]

Sun, P.

Taguchi, K.

K. Makita, T. Nakata, I. Watanabe, and K. Taguchi, “High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes,” Electron. Lett. 35(25), 2228–2229 (1999).
[Crossref]

Teich, M. C.

M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 4037–4039 (2002).
[Crossref]

Temkyn, H.

T. P. Pearsall, H. Temkyn, J. C. Bean, and S. Luryi, “Avalanche gain in GeSi/Si infrared waveguide detectors,” Electron. Device Lett. 7(5), 330–332 (1986).
[Crossref]

Teynor, W. A.

D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
[Crossref]

Thomas, D.

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).

Tokuda, Y.

E. Yagyu, E. Amagasaki Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. Opt. Fiber Commun. 2007, 145–147 (2007).

Tscherptner, N.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

Vaccaro, K.

D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
[Crossref]

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Wang, S.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

Watanabe, I.

K. Makita, T. Nakata, I. Watanabe, and K. Taguchi, “High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes,” Electron. Lett. 35(25), 2228–2229 (1999).
[Crossref]

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Yagyu, E.

E. Yagyu, E. Amagasaki Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. Opt. Fiber Commun. 2007, 145–147 (2007).

Yamaoka, T.

H. Ando, H. Kanbe, T. Kimura, T. Yamaoka, and T. Kaneda, “Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 μm,” J. Quantum Electron. 14(11), 804–809 (1978).
[Crossref]

Yokoyama, H.

Yoshiara, K.

E. Yagyu, E. Amagasaki Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. Opt. Fiber Commun. 2007, 145–147 (2007).

Yuan, P.

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz,” IEEE Photonics Technol. Lett. 11(9), 1162–1164 (1999).
[Crossref]

Zadka, M.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zaoui, W. S.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Zheng, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

Zheng, X. G.

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Appl. Phys. Lett. (1)

N. Li, R. Sidhu, X. Li, F. Ma, X. Zheng, S. Wang, G. Karve, S. Demiguel, A. L. Holmes, and J. C. Campbell, “InGaAs/InAlAs avalanche photodiode with undepleted absorber,” Appl. Phys. Lett. 82(13), 2175–2177 (2003).
[Crossref]

Bell Syst. Tech. J. (1)

S. D. Personick, “Receiver design for digital fiber-optic communication systems, Parts I and II,” Bell Syst. Tech. J. 52(6), 843–874 (1973).
[Crossref]

Electron. Device Lett. (1)

T. P. Pearsall, H. Temkyn, J. C. Bean, and S. Luryi, “Avalanche gain in GeSi/Si infrared waveguide detectors,” Electron. Device Lett. 7(5), 330–332 (1986).
[Crossref]

Electron. Lett. (2)

K. Makita, T. Nakata, I. Watanabe, and K. Taguchi, “High-frequency response limitation of high performance InAlGaAs/InAlAs superlattice avalanche photodiodes,” Electron. Lett. 35(25), 2228–2229 (1999).
[Crossref]

S. Shimizu, K. Shiba, T. Nakata, K. Kasahara, and K. Makita, “40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer,” Electron. Lett. 43(8), 476–477 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (4)

G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55 mm with a gain–bandwidth product of 320 GHz,” IEEE Photonics Technol. Lett. 13(8), 842–844 (2001).
[Crossref]

C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Holmes, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs–InAlAs avalanche photodiodes with gain–bandwidth product of 290 GHz,” IEEE Photonics Technol. Lett. 11(9), 1162–1164 (1999).
[Crossref]

D. S. Franco, K. Vaccaro, W. R. Clark, W. A. Teynor, H. M. Dauplaise, M. Roland, B. Krejca, and J. Lorenzo, “High-performance InGaAs–InP APDs on GaAs,” IEEE Photonics Technol. Lett. 17(4), 873–874 (2005).
[Crossref]

A. Rouvie, M. D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photonics Technol. Lett. 20(6), 455–457 (2008).
[Crossref]

IEEE Trans. Commun. (1)

M. M. Hayat, B. E. A. Saleh, and J. A. Gubner, “Bit-error rates for optical receivers using avalanche photodiodes with dead space,” IEEE Trans. Commun. 43(1), 99–106 (1995).
[Crossref]

IEEE Trans. Electron. Dev. (1)

M. M. Hayat, O.-H. Kwon, Y. Pan, P. Sotirelis, J. C. Campbell, B. E. A. Saleh, and M. C. Teich, “Gain-bandwidth characteristics of thin avalanche photodiodes,” IEEE Trans. Electron. Dev. 49(5), 4037–4039 (2002).
[Crossref]

J. Appl. Phys. (1)

R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[Crossref]

J. Lightwave Technol. (2)

M. M. Hayat and B. E. A. Saleh, “Statistical properties of the impulse response function of double carrier multiplication avalanche photodiodes including the effect of dead space,” J. Lightwave Technol. 10(10), 1415–1425 (1992).
[Crossref]

D. S. G. Ong, J. S. Ng, M. M. Hayat, P. Sun, and J. P. R. David, “Optimization of InP APDs for high-speed lightwave systems,” J. Lightwave Technol. 27(15), 3294–3302 (2009).
[Crossref]

J. Quantum Electron. (1)

H. Ando, H. Kanbe, T. Kimura, T. Yamaoka, and T. Kaneda, “Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 μm,” J. Quantum Electron. 14(11), 804–809 (1978).
[Crossref]

Nat. Photonics (1)

Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Nature (1)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Proc. Opt. Fiber Commun. (2)

E. Yagyu, E. Amagasaki Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. Opt. Fiber Commun. 2007, 145–147 (2007).

W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain–bandwidth product InGaAs/InP avalanche photodiodes for 10 Gb s21 receivers,” Proc. Opt. Fiber Commun. 1, 96–98 (1999).

Other (9)

Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication conference/National Fiber Optic Engineers Conference (2011).
[Crossref]

N. Yasuoka, H. Kuwatsuka, and A. Kuramata, “A. High-speed and high-efficiency InP/InGaAs waveguide avalanche photodiodes for 40 Gbit/s transmission systems,” Proc. Optical Fiber Communication Conf. (Optical Society of America) 1 (2004).

G. P. Agrawal, [Optical Receivers] Fiber-Optic Communication Systems (Wiley, 2010).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).

G. El-Howayek, Communication-Theoretic Foundations for Optical Receivers Using Dynamically Biased Avalanche Photodiodes. Ph.D. Dissertation, University of New Mexico, Albuquerque, New Mexico, December (2014).

G. El-howayek and M. M. Hayat, “Error probabilities for optical receivers that employ dynamically biased avalanche photodiodes,” IEEE Trans. Commun.in press.

A. J. Price, “Avalanche photodiode apparatus biased with a modulating power signal,” U.S. Patent US 5721424 A, 1998.

M. M. Hayat, J. P. R. David, S. Krishna, L. F. Lester, and D. A. Ramirez, “Impact ionization devices under dynamic electric fields,” U.S. Patent Application 13/289,645, November 04 (2011), pending.

P. Zarkesh-Ha and M. M. Hayat, “Resonance avalanche photodiodes for dynamic biasing,” U.S. Patent Application No. 62/002,352, May (2015), pending.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Calculated eye-diagram when dynamic biasing is used for an InP APD with a multiplication-region width of 200 nm. The amplitudes are in arbitrary units.
Fig. 2
Fig. 2 Custom designed differentially balanced circuit for dynamically biased APD.
Fig. 3
Fig. 3 Experimental eye-diagrams, at 3 Gbps, for dynamic (right) and static (left) biasing schemes. The optical power at the APD is −16.7dBm in both cases. The DC bias in both cases is −26.4 V, and the AC bias in the dynamic-bias case is 0.9Vpp.
Fig. 4
Fig. 4 (Left) BER of the static-bias APD as a function of the reverse bias. Dashed line represents the BER corresponding to the dynamic bias. (Right) BER as a function of the optical power received by the APD for the dynamic-and static-bias cases.

Metrics