Abstract

A novel concept for an optical parametric oscillator based on four-wave mixing (FOPO) in an optical fiber is presented. This setup has the ability of generating highly chirped signal and idler pulses with compressed pulse durations below 600 fs and pulse energies of up to 250 nJ. At a fixed pump wavelength of 1040 nm, the emerging signal and idler wavelengths can be easily tuned between 867 to 918 nm and 1200 to 1300 nm, respectively, only by altering the cavity length. With compressed peak powers >100 kW and a repetition rate of only 785 kHz, this source provides tunable intense ultra-short pulses at moderate average powers. This setup constitutes a stable, simple and in many ways superior alternative to bulk state-of-the-art OPO light converters for demanding biomedical applications and non-linear microspectroscopy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical parametric oscillator based on four-wave mixing in microstructure fiber

Jay E. Sharping, Marco Fiorentino, Prem Kumar, and Robert S. Windeler
Opt. Lett. 27(19) 1675-1677 (2002)

Optical parametric oscillator based on degenerate four-wave mixing in suspended core tellurite microstructured optical fiber

Lei Zhang, Tong Hoang Tuan, Harutaka Kawamura, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 23(20) 26299-26304 (2015)

Polarization switch of four-wave mixing in a tunable fiber optical parametric oscillator

Kangwen Yang, Pengbo Ye, Shikai Zheng, Jieshi Jiang, Kun Huang, Qiang Hao, and Heping Zeng
Opt. Express 26(3) 2995-3003 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Gottschall, T. Meyer, M. Baumgartl, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 22(18), 21921–21928 (2014).
    [Crossref] [PubMed]
  2. H. Lim, F. Ö. Ilday, and F. W. Wise, “Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser,” Opt. Lett. 28(8), 660–662 (2003).
    [Crossref] [PubMed]
  3. F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express 11(26), 3550–3554 (2003).
    [Crossref] [PubMed]
  4. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
    [Crossref] [PubMed]
  5. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
    [Crossref] [PubMed]
  6. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [Crossref] [PubMed]
  7. C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
    [Crossref]
  8. O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt. Lett. 28(17), 1522–1524 (2003).
    [Crossref] [PubMed]
  9. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
    [Crossref]
  10. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
    [Crossref] [PubMed]
  11. A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Y. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
    [Crossref]
  12. S. L. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
    [Crossref]
  13. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
    [Crossref] [PubMed]
  14. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
    [Crossref] [PubMed]
  15. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [Crossref] [PubMed]
  16. K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).
  17. M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
    [Crossref]
  18. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27(19), 1675–1677 (2002).
    [Crossref] [PubMed]
  19. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003).
    [Crossref] [PubMed]
  20. J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol. 26(14), 2184–2191 (2008).
    [Crossref]
  21. T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express 20(11), 12004–12013 (2012).
    [Crossref] [PubMed]
  22. F. Kienle, P. S. Teh, S.-U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35(21), 3580–3582 (2010).
    [Crossref] [PubMed]
  23. T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26(5), 304–306 (2001).
    [Crossref] [PubMed]
  24. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
    [Crossref] [PubMed]
  25. S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14(20), 9299–9306 (2006).
    [Crossref] [PubMed]
  26. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  27. D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
    [Crossref] [PubMed]
  28. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
    [Crossref] [PubMed]
  29. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
    [Crossref] [PubMed]
  30. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1(1), 71–74 (1996).
    [Crossref] [PubMed]
  31. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-{IR} microbeams,” Nature 377(6544), 20–21 (1995).
    [Crossref] [PubMed]
  32. K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett. 22(2), 135–136 (1997).
    [Crossref] [PubMed]

2014 (2)

T. Gottschall, T. Meyer, M. Baumgartl, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 22(18), 21921–21928 (2014).
[Crossref] [PubMed]

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

2013 (2)

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (1)

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (3)

2008 (2)

J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol. 26(14), 2184–2191 (2008).
[Crossref]

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

2007 (1)

2006 (1)

2004 (1)

2003 (6)

2002 (2)

2001 (1)

1997 (1)

1996 (1)

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1(1), 71–74 (1996).
[Crossref] [PubMed]

1995 (1)

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-{IR} microbeams,” Nature 377(6544), 20–21 (1995).
[Crossref] [PubMed]

1986 (1)

1970 (1)

S. L. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Abreu-Afonso, J.

Aguergaray, C.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Alam, S.-U.

Alfano, S. L.

S. L. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Asano, M.

Aus der Au, J.

Bahlmann, K.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1(1), 71–74 (1996).
[Crossref] [PubMed]

Barnes, N. P.

Baumgartl, M.

Berns, M. W.

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-{IR} microbeams,” Nature 377(6544), 20–21 (1995).
[Crossref] [PubMed]

Biancalana, F.

Birks, T.

Broderick, N. G. R.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Buckley, J.

Butler, S. A.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Chan, M.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Charan, K.

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

Chia, S.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Clarkson, W. A.

Coen, S.

Denk, W.

Dietzek, B.

Díez, A.

Durst, M. E.

Dvoyrin, V. V.

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Y. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Erkintalo, M.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Fiorentino, M.

Gawith, C. B. E.

Goh, C. S.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Gomes, L.

Gottschall, T.

Gratton, E.

Grudinin, A. B.

Gryczynski, I.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1(1), 71–74 (1996).
[Crossref] [PubMed]

Hanna, D. C.

Harvey, J. D.

Hasan, M. T.

Hawker, R.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Hell, S. W.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1(1), 71–74 (1996).
[Crossref] [PubMed]

Ho, M.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Horton, N.

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Ibsen, M.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Ilday, F.

Ilday, F. Ö.

Ivanov, A. A.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Jauregui, C.

Joly, N.

Jouhti, T.

Keller, U.

Kienle, F.

Kikuchi, K.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Knight, J.

Knight, J. C.

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

König, K.

Kumar, P.

Kurkov, A. S.

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Y. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Kuznetsova, L.

Lakowicz, J. R.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1(1), 71–74 (1996).
[Crossref] [PubMed]

Leonhardt, R.

Liang, H.

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-{IR} microbeams,” Nature 377(6544), 20–21 (1995).
[Crossref] [PubMed]

Lim, H.

Limpert, J.

Liu, H.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Liu, J.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Liu, T.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Malak, H. M.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1(1), 71–74 (1996).
[Crossref] [PubMed]

Mantulin, W. W.

Marakulin, A. V.

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Y. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Medvedkov, O. I.

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Y. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Meyer, T.

Minashina, L. A.

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Y. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Mitschke, F. M.

Mokhtar, M. R.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Mollenauer, L. F.

Nilsson, J.

Nishimura, N.

Nodop, D.

Okhotnikov, O. G.

Paschotta, R.

Popp, J.

Pyrkov, Y. N.

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Y. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

Richardson, D. J.

F. Kienle, P. S. Teh, S.-U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35(21), 3580–3582 (2010).
[Crossref] [PubMed]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Ross, G. W.

Rothhardt, J.

Rothhardt, M.

Runge, A. F. J.

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Russell, P.

Russell, P. S. J.

Sagnier, A.

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Schimpf, D.

Schrader, M.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1(1), 71–74 (1996).
[Crossref] [PubMed]

Set, S. Y.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Shapiro, S. L.

S. L. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Sharping, J. E.

Shepherd, D. P.

Sholokhov, E. M.

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Y. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Smith, P. G. R.

So, P. T. C.

Soini, A.

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1(1), 71–74 (1996).
[Crossref] [PubMed]

Südmeyer, T.

Sun, C.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Teh, P. S.

Theer, P.

Tromberg, B. J.

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-{IR} microbeams,” Nature 377(6544), 20–21 (1995).
[Crossref] [PubMed]

Tsai, T.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Tsvetkov, V. B.

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Y. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Tünnermann, A.

Turner, P. W.

Wadsworth, W.

Wadsworth, W. J.

Wang, K.

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Windeler, R. S.

Wise, F.

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

H. Lim, F. Ö. Ilday, and F. W. Wise, “Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser,” Opt. Lett. 28(8), 660–662 (2003).
[Crossref] [PubMed]

Wong, A. W.

Wong, G. K. L.

Xiang, N.

Xu, C.

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Yamashita, S.

Zheltikov, A. M.

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

Appl. Phys. Lett. (1)

C. Aguergaray, R. Hawker, A. F. J. Runge, M. Erkintalo, and N. G. R. Broderick, “120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser,” Appl. Phys. Lett. 103(12), 121111 (2013).
[Crossref]

Electron. Lett. (1)

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Wang, N. Horton, K. Charan, and C. Xu, “Advanced fiber soliton sources for nonlinear deep tissue imaging in biophotonics,” IEEE J. Sel. Top. Quantum Electron. 20, 6800311 (2014).

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. A. Ivanov, A. M. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2- to 2.2-µm tunable raman soliton source based on a Cr :forsterite laser and a photonic-crystal fiber,” IEEE Photonics Technol. Lett. 20(11), 900–902 (2008).
[Crossref]

J. Biomed. Opt. (2)

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. M. Malak, I. Gryczynski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1(1), 71–74 (1996).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Y. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Nature (1)

K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-{IR} microbeams,” Nature 377(6544), 20–21 (1995).
[Crossref] [PubMed]

Opt. Express (7)

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express 20(11), 12004–12013 (2012).
[Crossref] [PubMed]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20(19), 21010–21018 (2012).
[Crossref] [PubMed]

S. Yamashita and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14(20), 9299–9306 (2006).
[Crossref] [PubMed]

T. Gottschall, T. Meyer, M. Baumgartl, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy,” Opt. Express 22(18), 21921–21928 (2014).
[Crossref] [PubMed]

F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express 11(26), 3550–3554 (2003).
[Crossref] [PubMed]

Opt. Lett. (12)

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt. Lett. 28(17), 1522–1524 (2003).
[Crossref] [PubMed]

H. Lim, F. Ö. Ilday, and F. W. Wise, “Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser,” Opt. Lett. 28(8), 660–662 (2003).
[Crossref] [PubMed]

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
[Crossref] [PubMed]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27(19), 1675–1677 (2002).
[Crossref] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003).
[Crossref] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986).
[Crossref] [PubMed]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
[Crossref] [PubMed]

F. Kienle, P. S. Teh, S.-U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35(21), 3580–3582 (2010).
[Crossref] [PubMed]

T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26(5), 304–306 (2001).
[Crossref] [PubMed]

P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett. 28(12), 1022–1024 (2003).
[Crossref] [PubMed]

K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett. 22(2), 135–136 (1997).
[Crossref] [PubMed]

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82(2), 021805 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. L. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 a via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Setup of the OPO based on FWM in an optical fiber (PCF).HWP broadband half-wave plate 800-1400nm.
Fig. 2
Fig. 2 Optical parametric generation by four-wave mixing at different pump energies.
Fig. 3
Fig. 3 (a). Spectral evolution of the idler spectrum with increasing pump pulse energies. (b) Spectral tuning results by change of the feedback cavity length in steps of 1 cm.
Fig. 4
Fig. 4 (a) Idler spectrum at the output of the cavity in linear (black curve, left scale) and logarithmic scale (blue curve, right scale). (b) Simulated and measured auto-correlation trace.
Fig. 5
Fig. 5 (a) Idler spectrum at the output of the cavity in linear (black) and logarithmic scale (blue). (b) Simulated (red) and measured (black) auto-correlation trace.
Fig. 6
Fig. 6 Idler evolution (with each round-trip) of (a) the idler pulse spectrum and (b) its temporal profile. (c) Spectral intensity and phase in steady state. (d) Simulated temporal pulse profile (blue) with the corresponding simulated (black) and measured (red) AC. (e) Pulse evolution within a single round trip in steady state.
Fig. 7
Fig. 7 (a) Signal power comparison at varying pulse repetition rates and constant pump pulse durations for a constant phototoxicity level. (b) Colored and overlaid images combining 3PF (green), third harmonic generation (blue) and SHG (red) of an artery cross section from a rabbit model for atherosclerosis.

Metrics