Abstract

Acquiring high-contrast optical images deep inside biological tissues is still a challenging problem. Confocal microscopy is an important tool for biomedical imaging since it improves image quality by rejecting background signals. However, it suffers from low sensitivity in deep tissues due to light scattering. Recently, multimode fibers have provided a new paradigm for minimally invasive endoscopic imaging by controlling light propagation through them. Here we introduce a combined imaging technique where confocal images are acquired through a multimode fiber. We achieve this by digitally engineering the excitation wavefront and then applying a virtual digital pinhole on the collected signal. In this way, we are able to acquire images through the fiber with significantly increased contrast. With a fiber of numerical aperture 0.22, we achieve a lateral resolution of 1.5µm, and an axial resolution of 12.7µm. The point-scanning rate is currently limited by our spatial light modulator (20Hz).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber

Ioannis N. Papadopoulos, Salma Farahi, Christophe Moser, and Demetri Psaltis
Biomed. Opt. Express 4(2) 260-270 (2013)

Confocal microscopy through a multimode fiber using optical correlation

Damien Loterie, Sebastianus A. Goorden, Demetri Psaltis, and Christophe Moser
Opt. Lett. 40(24) 5754-5757 (2015)

Label-free CARS microscopy through a multimode fiber endoscope

Johanna Trägårdh, Tomáš Pikálek, Mojmír Šerý, Tobias Meyer, Jürgen Popp, and Tomáš Čižmár
Opt. Express 27(21) 30055-30066 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977).
    [Crossref]
  2. T. Wilson, Confocal Microscopy (Academic, 1990).
  3. P. Delaney and M. Harris, “Fiber-optics in scanning optical microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer US, 2006), pp. 508–515.
  4. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
    [Crossref] [PubMed]
  5. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [Crossref] [PubMed]
  6. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
    [Crossref]
  7. Mauna Kea Technologies, “Cellvizio Lab Technical Sheet,” http://www.landing.maunakeatech.com/download-cellvizio-lab-technical-sheet .
  8. J. T. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007).
    [Crossref] [PubMed]
  9. H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
    [Crossref] [PubMed]
  10. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
    [Crossref] [PubMed]
  11. B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
    [Crossref] [PubMed]
  12. Optiscan Pty, Ltd., “OptiScan FIVE 1 Product Brochure,” http://www.optiscan.com/Products/FIVE1_Brochure.pdf .
  13. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
    [Crossref] [PubMed]
  14. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
    [Crossref] [PubMed]
  15. S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” http://arxiv.org/abs/1506.08586 (2015).
  16. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  17. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref] [PubMed]
  18. E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
    [Crossref] [PubMed]
  19. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  20. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [Crossref] [PubMed]
  21. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  22. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  23. J. Carpenter, B. J. Eggleton, and J. Schröder, “110x110 optical mode transfer matrix inversion,” Opt. Express 22(1), 96–101 (2014).
    [Crossref] [PubMed]
  24. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
    [Crossref] [PubMed]
  25. A. S. Goy and D. Psaltis, “Digital confocal microscope,” Opt. Express 20(20), 22720–22727 (2012).
    [Crossref] [PubMed]
  26. A. S. Goy, M. Unser, and D. Psaltis, “Multiple contrast metrics from the measurements of a digital confocal microscope,” Biomed. Opt. Express 4(7), 1091–1103 (2013).
    [Crossref] [PubMed]
  27. M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
    [Crossref] [PubMed]
  28. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  29. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13(12), 123021 (2011).
    [Crossref]
  30. M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
    [Crossref] [PubMed]
  31. M. Plöschner and T. Čižmár, “Compact multimode fiber beam-shaping system based on GPU accelerated digital holography,” Opt. Lett. 40(2), 197–200 (2015).
    [Crossref] [PubMed]
  32. A. Yariv, “Fundamental media considerations for the propagation of phase-conjugate waves,” Opt. Lett. 16(18), 1376–1378 (1991).
    [Crossref] [PubMed]
  33. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [Crossref]
  34. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
    [Crossref] [PubMed]
  35. E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
    [Crossref] [PubMed]
  36. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24(12), 811–813 (1999).
    [Crossref] [PubMed]
  37. S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21(19), 22504–22514 (2013).
    [Crossref] [PubMed]
  38. A. M. Caravaca Aguirre and R. Piestun, “Robustness of multimode fiber focusing through wavefront shaping,” in Latin America Optics and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. LTh4A.23.
    [Crossref]
  39. B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).
    [Crossref] [PubMed]
  40. S. González and Z. Tannous, “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma,” J. Am. Acad. Dermatol. 47(6), 869–874 (2002).
    [Crossref] [PubMed]
  41. C. Liang, M. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express 9(13), 821–830 (2001).
    [Crossref] [PubMed]
  42. D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
    [Crossref] [PubMed]
  43. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
    [Crossref] [PubMed]
  44. P. J. Schreier and L. L. Scharf, “Correlation analysis,” in Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals (Cambridge University, 2010), pp. 85–88.

2015 (4)

E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
[Crossref] [PubMed]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

M. Plöschner and T. Čižmár, “Compact multimode fiber beam-shaping system based on GPU accelerated digital holography,” Opt. Lett. 40(2), 197–200 (2015).
[Crossref] [PubMed]

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref] [PubMed]

2014 (6)

2013 (5)

2012 (7)

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

A. S. Goy and D. Psaltis, “Digital confocal microscope,” Opt. Express 20(20), 22720–22727 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

2011 (3)

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13(12), 123021 (2011).
[Crossref]

B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
[Crossref] [PubMed]

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[Crossref] [PubMed]

2010 (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

2008 (1)

2007 (2)

2002 (1)

S. González and Z. Tannous, “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma,” J. Am. Acad. Dermatol. 47(6), 869–874 (2002).
[Crossref] [PubMed]

2001 (2)

C. Liang, M. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express 9(13), 821–830 (2001).
[Crossref] [PubMed]

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

1999 (1)

1993 (1)

1991 (1)

1977 (1)

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977).
[Crossref]

’t Hooft, G. W.

B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
[Crossref] [PubMed]

Andreoli, D.

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref] [PubMed]

Aziz, D.

Balberg, M.

Barbastathis, G.

Bertolotti, J.

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[Crossref] [PubMed]

Bierhoff, W. C. J.

B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
[Crossref] [PubMed]

Bixler, J. N.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Boccara, A. C.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13(12), 123021 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Brady, D. J.

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Cao, H.

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Carpenter, J.

Choi, W.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choudhury, A.

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977).
[Crossref]

Chung, E.

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

M. Plöschner and T. Čižmár, “Compact multimode fiber beam-shaping system based on GPU accelerated digital holography,” Opt. Lett. 40(2), 197–200 (2015).
[Crossref] [PubMed]

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Conkey, D. B.

Contag, C. H.

Cui, M.

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Descour, M.

Desjardins, A. E.

B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
[Crossref] [PubMed]

Dholakia, K.

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[Crossref] [PubMed]

Doblas, A.

Eggleton, B. J.

Engelbrecht, C. J.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Fink, M.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13(12), 123021 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Garcia-Sucerquia, J.

Gigan, S.

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13(12), 123021 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Gilboa, D.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” http://arxiv.org/abs/1506.08586 (2015).

Gmitro, A. F.

González, S.

S. González and Z. Tannous, “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma,” J. Am. Acad. Dermatol. 47(6), 869–874 (2002).
[Crossref] [PubMed]

Goorden, S. A.

Goy, A. S.

Grésillon, S.

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref] [PubMed]

Helmchen, F.

Hendriks, B. H. W.

B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
[Crossref] [PubMed]

Hezemans, C. A.

B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
[Crossref] [PubMed]

Horikx, J. J. L.

B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
[Crossref] [PubMed]

Jabbour, J. M.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Jang, M.

Johnston, R. S.

Judkewitz, B.

Katz, O.

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref] [PubMed]

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” http://arxiv.org/abs/1506.08586 (2015).

Kim, D.

Kim, J.

Kim, M.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Kino, G. S.

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Lee, D.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Lerosey, G.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13(12), 123021 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Liang, C.

Liu, J. T.

Lucassen, G. W.

B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
[Crossref] [PubMed]

Maitland, K. C.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Mandella, M. J.

Martínez-Corral, M.

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Mihajlovic, N.

B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
[Crossref] [PubMed]

Moon, J.

Morales-Delgado, E. E.

Moser, C.

Mosk, A. P.

Niv, E.

Papadopoulos, I. N.

Pierce, M. C.

Piestun, R.

Piyawattanametha, W.

Plöschner, M.

Popoff, S.

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref] [PubMed]

Popoff, S. M.

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13(12), 123021 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Psaltis, D.

Ra, H.

Redding, B.

Richards-Kortum, R.

Rosen, S.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” http://arxiv.org/abs/1506.08586 (2015).

Ruan, H.

Saavedra, G.

Saldua, M. A.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Sánchez-Ortiga, E.

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Schröder, J.

Seibel, E. J.

Sheppard, C. J. R.

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977).
[Crossref]

Shin, H.-J.

Silberberg, Y.

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” http://arxiv.org/abs/1506.08586 (2015).

Solgaard, O.

Straka, B.

Sung, K.-B.

Tannous, Z.

S. González and Z. Tannous, “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma,” J. Am. Acad. Dermatol. 47(6), 869–874 (2002).
[Crossref] [PubMed]

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Unser, M.

Vellekoop, I. M.

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Volpe, G.

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref] [PubMed]

Wang, T. D.

Wong, L. K.

Yang, C.

Yang, T. D.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yariv, A.

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Zhou, H.

Ziegler, D.

Ann. Biomed. Eng. (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

J. Am. Acad. Dermatol. (1)

S. González and Z. Tannous, “Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma,” J. Am. Acad. Dermatol. 47(6), 869–874 (2002).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

B. H. W. Hendriks, W. C. J. Bierhoff, J. J. L. Horikx, A. E. Desjardins, C. A. Hezemans, G. W. ’t Hooft, G. W. Lucassen, and N. Mihajlovic, “High-resolution resonant and nonresonant fiber-scanning confocal microscope,” J. Biomed. Opt. 16(2), 026007 (2011).
[Crossref] [PubMed]

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

New J. Phys. (1)

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13(12), 123021 (2011).
[Crossref]

Opt. Acta Int. J. Opt. (1)

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977).
[Crossref]

Opt. Commun. (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001).
[Crossref]

Opt. Express (14)

S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21(19), 22504–22514 (2013).
[Crossref] [PubMed]

J. Carpenter, B. J. Eggleton, and J. Schröder, “110x110 optical mode transfer matrix inversion,” Opt. Express 22(1), 96–101 (2014).
[Crossref] [PubMed]

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
[Crossref] [PubMed]

B. Redding, S. M. Popoff, and H. Cao, “All-fiber spectrometer based on speckle pattern reconstruction,” Opt. Express 21(5), 6584–6600 (2013).
[Crossref] [PubMed]

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
[Crossref] [PubMed]

C. Liang, M. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express 9(13), 821–830 (2001).
[Crossref] [PubMed]

H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007).
[Crossref] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[Crossref] [PubMed]

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

A. S. Goy and D. Psaltis, “Digital confocal microscope,” Opt. Express 20(20), 22720–22727 (2012).
[Crossref] [PubMed]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
[Crossref] [PubMed]

E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (2)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

D. Andreoli, G. Volpe, S. Popoff, O. Katz, S. Grésillon, and S. Gigan, “Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix,” Sci. Rep. 5, 10347 (2015).
[Crossref] [PubMed]

Other (7)

A. M. Caravaca Aguirre and R. Piestun, “Robustness of multimode fiber focusing through wavefront shaping,” in Latin America Optics and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2014), p. LTh4A.23.
[Crossref]

Optiscan Pty, Ltd., “OptiScan FIVE 1 Product Brochure,” http://www.optiscan.com/Products/FIVE1_Brochure.pdf .

S. Rosen, D. Gilboa, O. Katz, and Y. Silberberg, “Focusing and scanning through flexible multimode fibers without access to the distal end,” http://arxiv.org/abs/1506.08586 (2015).

Mauna Kea Technologies, “Cellvizio Lab Technical Sheet,” http://www.landing.maunakeatech.com/download-cellvizio-lab-technical-sheet .

T. Wilson, Confocal Microscopy (Academic, 1990).

P. Delaney and M. Harris, “Fiber-optics in scanning optical microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer US, 2006), pp. 508–515.

P. J. Schreier and L. L. Scharf, “Correlation analysis,” in Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals (Cambridge University, 2010), pp. 85–88.

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (16139 KB)      Dynamic projection of light patterns at the output of a multimode fiber (‘La Linea’, 1971, Osvaldo Cavandoli).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Overview of the multimode fiber confocal system. A reference laser beam is reflected off a spatial light modulator (SLM). The phase modulated light beam is injected into the fiber in order to produce the desired excitation beam at the sample plane. The field collected back through the fiber is digitally processed in order to render a confocal image of the sample.
Fig. 2
Fig. 2 Detailed diagram of the experimental setup. VA: variable attenuator; HW1, HW2: half-wave plate; L1: f = 30mm lens; L2: f = 75mm lens; L3: f = 200mm lens; OBJ1: infinity corrected 10x microscope objective; P: 10µm pinhole; L3: f = 200mm lens; PBS: polarizing beamsplitter; BS: beamsplitter; LP: linear polarizer; SLM: spatial light modulator; L4, L5: f = 250mm lenses; OBJ2, OBJ3: 40x microscope objective; MMF: multimode fiber.
Fig. 3
Fig. 3 (a) The transmission matrix is measured using a basis of plane waves, which are equivalent to pixels in the Fourier domain. Each 'Fourier pixel' is successively turned on and off, and the corresponding output pattern is recorded. Each output pattern forms one column of the transmission matrix. (b) Pattern projection: based on a digital image of part of a USAF1951 pattern, a wavefront is calculated using the inverse transmission matrix. This wavefront is then generated by the SLM and sent through the fiber from the proximal end. On the distal of the fiber, the pattern emerges. (c) Reverse image transmission: a part of a USAF1951 target is illuminated from behind by a collimated beam and imaged onto the distal facet of the fiber. The wavefront generated in the proximal end is recorded, and decoded using the transmission matrix. In this way, the pattern can be reconstructed digitally. (d) Experimental results for image transmission. The last row is a snapshot from an animated cartoon (‘La Linea’, 1971, Osvaldo Cavandoli); see also the associated Visualization 1.
Fig. 4
Fig. 4 (a) In the digital confocal method, the recorded field is virtually propagated back to the position of the sample via the transmission matrix. There, it is filtered with a pinhole mask. (b) In the correlation method, the returning field is correlated with the illumination field.
Fig. 5
Fig. 5 (a-d) Microscopic image of a human epithelial cell reconstructed using (a) the total intensity method, (b) the digital confocal method, (c) the correlation method. (d) Control image taken in transmission, i.e. observed from the distal end with a camera using white-light illumination. (e-h) 1µm polystyrene beads imaged with (e) the total intensity method, (f) the confocal method, (g) the correlation method, (h) control. (a-d) Scale bar is 20µm. (e-h) Scale bar is 5µm.
Fig. 6
Fig. 6 Transversal scans of a coverslip with the (a) total intensity method, (b) digital confocal method, (c) correlation method and (d) control image taken with a commercial confocal microscope. The scale bars represents 20µm of distance in air. Note that the thickness of the coverslip is approximately 150µm, but due to refraction it appears thinner in these images. The vertical axis is perpendicular to the coverslip, and the horizontal axis represents a lateral scan. (e) Schematic description of the experiment.
Fig. 7
Fig. 7 Complex correlation coefficient calculated between the initial output field and the output field at all later times. (a) The magnitude of the correlation coefficient reveals that the field distribution does not change significantly over time. (b) The phase drift can be measured over time, and corrected by interpolation.
Fig. 8
Fig. 8 Gerchberg-Saxton algorithm for phase-only encoding. (a) The initial field. (b) The Fourier transform of the initial field. The Fourier transform is a decomposition into plane waves with varying angles with the optical axis. In the Fourier domain, we can therefore distinguish two zones with respect to the fiber: there are coefficients corresponding to plane waves within the numerical aperture (NA) of the fiber, and plane waves outside the NA of the fiber. The boundary between both zones is shown with a dashed line. (c) In the first step of the algorithm, we make the field phase-only in the spatial domain by setting the amplitude of each pixel to 1. (d) In the Fourier transform of (c), we observe that the phase-only operation has created additional components outside the NA of the fiber, and has also distorted the components within the NA of the fiber. (e) The second step of the algorithm is to correct Fourier coefficients that were distorted by the phase-only operation. Here, we simply replace these coefficients with the undistorted coefficients of the initial field within the NA of the fiber. The coefficients outside the NA of the fiber are left as calculated by the algorithm; their value can be freely modified since this corresponds to light that will be attenuated inside the fiber. (f) In the spatial domain, the correction of the Fourier coefficients has recreated a non-constant distribution of amplitude. The process (c) to (f) is therefore repeated for several iterations. (g) After 50 iterations, a phase-only field is obtained. (h) The final field has the desired Fourier components within the numerical aperture of the fiber. Note that in our experiments, the fields (a), (c), (f), (g) and their Fourier transforms (b), (d), (e), (f) have a resolution of 800 by 800 pixels, but for clarity only the central 125 by 125 pixels of the Fourier transforms are shown in (b), (d), (e), (h).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T 1 = V S + U H

Metrics