Abstract

A spherical acousto-optic lens (AOL) consists of four acousto-optic deflectors (AODs) that can rapidly and precisely control the focal position of an optical beam in 3D space. Development and application of AOLs has increased the speed at which 3D random access point measurements can be performed with a two-photon microscope. This has been particularly useful for measuring brain activity with fluorescent reporter dyes because neuronal signalling is rapid and sparsely distributed in 3D space. However, a theoretical description of light propagation through AOLs has lagged behind their development, resulting in only a handful of simplified principles to guide AOL design and optimization. To address this we have developed a ray-based computer model of an AOL incorporating acousto-optic diffraction and refraction by anisotropic media. We extended an existing model of a single AOD with constant drive frequency to model a spherical AOL: four AODs in series driven with linear chirps. AOL model predictions of the relationship between optical transmission efficiency and acoustic drive frequency including second order diffraction effects closely matched experimental measurements from a 3D two-photon AOL microscope. Moreover, exploration of different AOL drive configurations identified a new simple rule for maximizing the field of view of our compact AOL design. By providing a theoretical basis for understanding optical transmission through spherical AOLs, our open source model is likely to be useful for comparing and improving different AOL designs, as well as identifying the acoustic drive configurations that provide the best transmission performance over the 3D focal region.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic wavefront shaping with an acousto-optic lens for laser scanning microscopy

George Konstantinou, Paul A. Kirkby, Geoffrey J. Evans, K. M. Naga Srinivas Nadella, Victoria A. Griffiths, John E. Mitchell, and R. Angus Silver
Opt. Express 24(6) 6283-6299 (2016)

A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy

Paul A. Kirkby, K. M. Naga Srinivas Nadella, and R. Angus Silver
Opt. Express 18(13) 13720-13744 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
    [Crossref] [PubMed]
  2. E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
    [Crossref] [PubMed]
  3. T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
    [Crossref]
  4. R. J. Cotton, E. Froudarakis, P. Storer, P. Saggau, and A. S. Tolias, “Three-dimensional mapping of microcircuit correlation structure,” Front. Neural Circuits 7, 151 (2013).
    [Crossref] [PubMed]
  5. G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
    [Crossref] [PubMed]
  6. G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
    [Crossref] [PubMed]
  7. A. Kaplan, N. Friedman, and N. Davidson, “Acousto-optic lens with very fast focus scanning,” Opt. Lett. 26(14), 1078–1080 (2001).
    [Crossref]
  8. G. D. Reddy and P. Saggau, “Fast three-dimensional laser scanning scheme using acousto-optic deflectors,” J. Biomed. Opt. 10(6), 064038 (2005).
    [Crossref]
  9. P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
    [Crossref] [PubMed]
  10. G. Mihajlik, A. Barócsi, and P. Maák, “Complex, 3D modeling of the acousto-optical interaction and experimental verification,” Opt. Express 22(9), 10165–10180 (2014).
    [Crossref] [PubMed]
  11. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).
  12. P. Maák, L. Jakab, A. Barócsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172(1–6), 297–324 (1999).
    [Crossref]
  13. A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489 (1972).
    [Crossref]
  14. H. A. Buchdahl, An Introduction to Hamiltonian Optics (Courier Dover Publications, 1993).
  15. G. J. Evans, “Ray-based AOL model,” github.com/SilverLabUCL/aol_model .
  16. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).
    [Crossref]
  17. N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4(10), 3736–3745 (1971).
    [Crossref]
  18. T. Yano and A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45(3), 1243 (1974).
    [Crossref]
  19. P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “Methods and apparatus to control acousto-optic deflectors,” United States Patent WO2011131933 (October27, 2011).

2014 (4)

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

G. Mihajlik, A. Barócsi, and P. Maák, “Complex, 3D modeling of the acousto-optical interaction and experimental verification,” Opt. Express 22(9), 10165–10180 (2014).
[Crossref] [PubMed]

2013 (1)

R. J. Cotton, E. Froudarakis, P. Storer, P. Saggau, and A. S. Tolias, “Three-dimensional mapping of microcircuit correlation structure,” Front. Neural Circuits 7, 151 (2013).
[Crossref] [PubMed]

2012 (1)

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

2010 (1)

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
[Crossref] [PubMed]

2008 (1)

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

2005 (1)

G. D. Reddy and P. Saggau, “Fast three-dimensional laser scanning scheme using acousto-optic deflectors,” J. Biomed. Opt. 10(6), 064038 (2005).
[Crossref]

2001 (1)

1999 (1)

P. Maák, L. Jakab, A. Barócsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172(1–6), 297–324 (1999).
[Crossref]

1974 (1)

T. Yano and A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45(3), 1243 (1974).
[Crossref]

1972 (1)

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489 (1972).
[Crossref]

1971 (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4(10), 3736–3745 (1971).
[Crossref]

Barócsi, A.

G. Mihajlik, A. Barócsi, and P. Maák, “Complex, 3D modeling of the acousto-optical interaction and experimental verification,” Opt. Express 22(9), 10165–10180 (2014).
[Crossref] [PubMed]

P. Maák, L. Jakab, A. Barócsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172(1–6), 297–324 (1999).
[Crossref]

Berens, P.

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

Bethge, M.

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

Bonner, W. A.

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489 (1972).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).
[Crossref]

Buchdahl, H. A.

H. A. Buchdahl, An Introduction to Hamiltonian Optics (Courier Dover Publications, 1993).

Chiovini, B.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Cotton, R. J.

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

R. J. Cotton, E. Froudarakis, P. Storer, P. Saggau, and A. S. Tolias, “Three-dimensional mapping of microcircuit correlation structure,” Front. Neural Circuits 7, 151 (2013).
[Crossref] [PubMed]

Davidson, N.

Duemani Reddy, G.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

Ecker, A. S.

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

Fernández-Alfonso, T.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

Fink, R.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

Friedman, N.

Froudarakis, E.

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

R. J. Cotton, E. Froudarakis, P. Storer, P. Saggau, and A. S. Tolias, “Three-dimensional mapping of microcircuit correlation structure,” Front. Neural Circuits 7, 151 (2013).
[Crossref] [PubMed]

Hillier, D.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Iacaruso, M. F.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

Jakab, L.

P. Maák, L. Jakab, A. Barócsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172(1–6), 297–324 (1999).
[Crossref]

Káli, S.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

Kaplan, A.

Kaszás, A.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Katona, G.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Kelleher, K.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

Kirkby, P. A.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
[Crossref] [PubMed]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “Methods and apparatus to control acousto-optic deflectors,” United States Patent WO2011131933 (October27, 2011).

Maák, P.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

G. Mihajlik, A. Barócsi, and P. Maák, “Complex, 3D modeling of the acousto-optical interaction and experimental verification,” Opt. Express 22(9), 10165–10180 (2014).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

P. Maák, L. Jakab, A. Barócsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172(1–6), 297–324 (1999).
[Crossref]

Mihajlik, G.

Nadella, K. M. N. S.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
[Crossref] [PubMed]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “Methods and apparatus to control acousto-optic deflectors,” United States Patent WO2011131933 (October27, 2011).

Pálfi, D.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

Pichler, B.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

Reddy, G. D.

G. D. Reddy and P. Saggau, “Fast three-dimensional laser scanning scheme using acousto-optic deflectors,” J. Biomed. Opt. 10(6), 064038 (2005).
[Crossref]

Richter, P.

P. Maák, L. Jakab, A. Barócsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172(1–6), 297–324 (1999).
[Crossref]

Roš, H.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

Roska, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Rózsa, B.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Saggau, P.

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

R. J. Cotton, E. Froudarakis, P. Storer, P. Saggau, and A. S. Tolias, “Three-dimensional mapping of microcircuit correlation structure,” Front. Neural Circuits 7, 151 (2013).
[Crossref] [PubMed]

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

G. D. Reddy and P. Saggau, “Fast three-dimensional laser scanning scheme using acousto-optic deflectors,” J. Biomed. Opt. 10(6), 064038 (2005).
[Crossref]

Silver, R. A.

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
[Crossref] [PubMed]

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “Methods and apparatus to control acousto-optic deflectors,” United States Patent WO2011131933 (October27, 2011).

Sinz, F. H.

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

Storer, P.

R. J. Cotton, E. Froudarakis, P. Storer, P. Saggau, and A. S. Tolias, “Three-dimensional mapping of microcircuit correlation structure,” Front. Neural Circuits 7, 151 (2013).
[Crossref] [PubMed]

Stroud, R.

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

Szabó, G.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

Szabó, M. F.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

Szadai, Z.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

Szalay, G.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Tolias, A. S.

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

R. J. Cotton, E. Froudarakis, P. Storer, P. Saggau, and A. S. Tolias, “Three-dimensional mapping of microcircuit correlation structure,” Front. Neural Circuits 7, 151 (2013).
[Crossref] [PubMed]

Turi, G. F.

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

Uchida, N.

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4(10), 3736–3745 (1971).
[Crossref]

Veress, M.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Vizi, E. S.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Warner, A. W.

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489 (1972).
[Crossref]

Watanabe, A.

T. Yano and A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45(3), 1243 (1974).
[Crossref]

White, D. L.

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489 (1972).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).
[Crossref]

Xu, J.

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

Yano, T.

T. Yano and A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45(3), 1243 (1974).
[Crossref]

Yatsenko, D.

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

Front. Neural Circuits (1)

R. J. Cotton, E. Froudarakis, P. Storer, P. Saggau, and A. S. Tolias, “Three-dimensional mapping of microcircuit correlation structure,” Front. Neural Circuits 7, 151 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (2)

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489 (1972).
[Crossref]

T. Yano and A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45(3), 1243 (1974).
[Crossref]

J. Biomed. Opt. (1)

G. D. Reddy and P. Saggau, “Fast three-dimensional laser scanning scheme using acousto-optic deflectors,” J. Biomed. Opt. 10(6), 064038 (2005).
[Crossref]

J. Neurosci. Methods (1)

T. Fernández-Alfonso, K. M. N. S. Nadella, M. F. Iacaruso, B. Pichler, H. Roš, P. A. Kirkby, and R. A. Silver, “Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope,” J. Neurosci. Methods 222, 69–81 (2014).
[Crossref]

Nat. Methods (1)

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Nat. Neurosci. (2)

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[Crossref] [PubMed]

E. Froudarakis, P. Berens, A. S. Ecker, R. J. Cotton, F. H. Sinz, D. Yatsenko, P. Saggau, M. Bethge, and A. S. Tolias, “Population code in mouse V1 facilitates readout of natural scenes through increased sparseness,” Nat. Neurosci. 17(6), 851–857 (2014).
[Crossref] [PubMed]

Neuron (1)

B. Chiovini, G. F. Turi, G. Katona, A. Kaszás, D. Pálfi, P. Maák, G. Szalay, M. F. Szabó, G. Szabó, Z. Szadai, S. Káli, and B. Rózsa, “Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves,” Neuron 82(4), 908–924 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

P. Maák, L. Jakab, A. Barócsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172(1–6), 297–324 (1999).
[Crossref]

Opt. Express (2)

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13721–13745 (2010).
[Crossref] [PubMed]

G. Mihajlik, A. Barócsi, and P. Maák, “Complex, 3D modeling of the acousto-optical interaction and experimental verification,” Opt. Express 22(9), 10165–10180 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4(10), 3736–3745 (1971).
[Crossref]

Other (5)

P. A. Kirkby, K. M. N. S. Nadella, and R. A. Silver, “Methods and apparatus to control acousto-optic deflectors,” United States Patent WO2011131933 (October27, 2011).

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

H. A. Buchdahl, An Introduction to Hamiltonian Optics (Courier Dover Publications, 1993).

G. J. Evans, “Ray-based AOL model,” github.com/SilverLabUCL/aol_model .

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Action of a single acousto-optic deflector (AOD) on an optical beam (rays shown in red). Acoustic wavefronts shown in blue and optical wavefronts shown as dashed lines. (a) AOD transducer is driven with a constant frequency. The optical beam is uniformly deflected with no change in curvature (parallel rays remain parallel). (b) AOD transducer driven with a linear chirp (acoustic frequency changes linearly with position and time). The centre ray experiences the same local frequency as in (a) and is deflected by the same angle. However, the top ray experiences a higher frequency so it is deflected more and the bottom ray experiences a lower frequency so it is deflected less. The net effect is to introduce curvature (i.e. focus the beam) as well as deflection. The curvature is proportional to the frequency gradient.
Fig. 2
Fig. 2 Schematic diagram of a 3D two-photon AOL microscope (AOLM). Mirrors and lenses shown in grey. All other components coloured and labelled. The crossed mirrors to the right of the laser are at different elevations. The laser is a femtosecond pulsed laser suitable for two-photon excitation. The prechirper comprises two prisms and a mirror used to add temporal dispersion to the laser beam. The intensity of the laser beam is controlled by the Pockels cell. The AOL is shown as four AODs (X1, Y1, X2, Y2) with their acoustic directions indicated in black. Polarising units placed before the AODs are not shown. The beam is relayed by two 4f systems from the AOL to the back focal plane of the microscope objective. The position of the focal point inside the imaging volume is precisely and rapidly controlled by the AOL. Green lines indicate two-photon fluorescence that is detected by the photo-multiplier tube (PMT). The mirror to the right of the objective is dichroic.
Fig. 3
Fig. 3 (a)–(c) Sequences of acoustic frequency ramps used to drive the four AODs that make up an AOL. The colour indicates which AOD the ramp is for: X1 blue; Y1 red; X2 green; Y2 black. The ramps cause the AOL to focus at (a) (0,0,1); (b) (0.01,0,1); (c) (0.01,0,1) m. Note the resulting focal lengths of the AOL are the same (z = 1 m) for (a)–(c) because the ramp gradients are unchanged. (d) Comparison of light ray paths through the AOL (purple, cyan and orange) when driven with the ramps shown in (a), (b) and (c), respectively. Note the cyan and orange rays take different paths but focus at the same point. The short grey lines indicate AOD z-positions. (e) Base ray passing through a pair of anti-parallel AODs to illustrate Eqs. (5) and (6).
Fig. 4
Fig. 4 Tuning the AOD transducer width parameter in our model by fitting experimentally measured separations between efficiency minima. Model simulations following tuning (solid lines) and experimental measurements (dots) for AOD diffraction efficiency into the −1 mode against incidence angle. Plots are for two different AODs with transducer widths of (a) 1.15 mm and (b) 3.25 mm. Optical wavelength was 785 nm; acoustic frequency 39 MHz; RF drive power 1.5 W.
Fig. 5
Fig. 5 Tuning the RF-acoustic coupling and second-order diffraction coefficient, α, in our model for the narrow transducer AODs. The diffraction efficiencies of −1 and −2 modes measured at the −1 mode Bragg angle (adjusted for each frequency) are plotted against drive frequency, for two different wavelengths. The green and blue dots are experimentally measured efficiencies into the −1 mode at 800 nm and 909 nm optical wavelengths respectively. The cyan and red dots are experimentally measured efficiencies into the −2 mode at 800 nm and 909 nm optical wavelengths respectively. The magenta triangles are the conversion efficiency of RF drive signal into acoustic power (RF-acoustic coupling) inferred from the experimental measurements by our model. The magenta line is used by the model to interpolate the RF-acoustic coupling between the magenta triangles. The green, blue, cyan and red lines are the model predictions, using the inferred RF-acoustic coupling, corresponding to the experimentally measured quantities.
Fig. 6
Fig. 6 Experimental set-up and single AOD simulations. (a) Schematic diagram of the experimental set-up for measuring the incidence angle and efficiency of an AOD. Optical paths of red and green laser light shown as solid lines. Reflected green beam shown as dashed line. Components are coloured as follows: beam splitter, yellow; lenses, blue; mirrors, dark grey. (b) Simulated diffraction efficiency of a wide transducer AOD into the −1 mode. (c) Simulated diffraction efficiency of a narrow transducer AOD into the −1 mode. Dashed red lines mark out different PDR values if the AOD was used as X2 (or Y2) in an AOL. (d) Simulated diffraction efficiency of a narrow transducer AOD into the −2 mode as a fraction of the −1 mode efficiency. Optical wavelength was 920 nm in (b)–(d). The dotted yellow lines in (c) and (d) indicate the AOD’s second-order boundary. Blue and green dots on (b) and (c) indicate frequency and incidence angle for X1 and X2 in a cylindrical AOL focussed at ϕx = 1°, z = ∞ with PDR = 0 and PDR = −0.4 respectively.
Fig. 7
Fig. 7 Comparison of simulated fluorescence intensity over the field of view (model; first and third rows) with experimentally measured fluorescence intensities (experiment; second and fourth rows) for the PDR values 5, 2, 1, 0.5, 0, −0.5, −2, −5 (shown in bold). Fluorescence intensity values were normalised to the peak value. Excitation wavelength 920 nm. Each plane is described by the AOL’s lateral deflection of the optical beam, x-angle and y-angle—see Eqs. (3) and (4).
Fig. 8
Fig. 8 Comparison of normalised fluorescence intensity from experiment and simulations for PDR = 0.3. Three focal planes are shown: z = −0.5 m, z = ∞, z = 0.5 m. The optical wavelength was 920 nm.
Fig. 9
Fig. 9 AOLM z-stacks for (a) PDR = 5, (a) PDR = 0.3 and (b) PDR = −2. Fluorescence intensity in arbitrary units. (d) Relationship between AOLM imaging volume and PDR. AOLM imaging volume boundary defined as 60% of peak fluorescence. The peak is at PDR = 0.3. The yellow, green and blue dots identify the volume shown in three z-stacks (a)–(c) on the plot (d). Optical wavelength 920 nm.

Tables (1)

Tables Icon

Table 1 Comparison of our computer model with the model detailed in [12].

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

θ = λ F V
θ 0 = λ F 0 V
ϕ x = λ V [ ( F X 2 F 0 ) ( 1 + s z ) ( F X 1 F 0 ) ( 1 + 3 s z ) ]
ϕ y = λ V [ ( F Y 2 F 0 ) ( F Y 1 F 0 ) ( 1 + 2 s z ) ]
δ θ 1 = θ 0 θ 1 = λ ( F 0 F 1 ) V , δ θ 2 = θ 2 θ 0 = λ ( F 2 F 0 ) V
PDR = δ θ 1 δ θ 2 = F 0 F 1 F 2 F 0
PDR x = F 0 F X 1 F X 2 F 0 , PDR y = F 0 F Y 1 F Y 2 F 0
η = u 2 ( sin σ σ ) 2
σ = ( ζ 2 + u 2 ) 1 2 , u = π 2 λ L n o 3 2 n e 3 2 p S , ζ = 1 2 Δ k L
η ˜ 1 = η 1 ( 1 α η 2 )

Metrics