Abstract

We experimentally demonstrate an underwater wireless optical communications (UWOC) employing 450-nm TO-9 packaged and fiber-pigtailed laser diode (LD) directly encoded with an orthogonal frequency division multiplexed quadrature amplitude modulation (QAM-OFDM) data. A record data rate of up to 4.8 Gbit/s over 5.4-m transmission distance is achieved. By encoding the full 1.2-GHz bandwidth of the 450-nm LD with a 16-QAM-OFDM data, an error vector magnitude (EVM) of 16.5%, a signal-to-noise ratio (SNR) of 15.63 dB and a bit error rate (BER) of 2.6 × 10−3, well pass the forward error correction (FEC) criterion, were obtained.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Underwater wireless optical communication system using a 16-QAM modulated 450-nm laser diode based on an FPGA

Jingjing Wang, Changfeng Tian, Xinghai Yang, Wei Shi, Qiuna Niu, and T. Aaron Gulliver
Appl. Opt. 58(16) 4553-4559 (2019)

2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

Hassan Makine Oubei, Changping Li, Ki-Hong Park, Tien Khee Ng, Mohamed-Slim Alouini, and Boon S. Ooi
Opt. Express 23(16) 20743-20748 (2015)

450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM

Yu-Chieh Chi, Dan-Hua Hsieh, Cheng-Ting Tsai, Hsiang-Yu Chen, Hao-Chung Kuo, and Gong-Ru Lin
Opt. Express 23(10) 13051-13059 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
    [Crossref]
  2. P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
    [Crossref]
  3. G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
    [Crossref]
  4. C. Gabriel, M. Khalighi, S. Bourennane, P. Léon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5(1), 1–12 (2013).
    [Crossref]
  5. W. Cox and J. Muth, “Simulating channel losses in an underwater optical communication system,” J. Opt. Soc. Am. A 31(5), 920–934 (2014).
    [Crossref] [PubMed]
  6. B. Cochenour, L. Mullen, and J. Muth, “Effect of scattering albedo on attenuation and polarization of light underwater,” Opt. Lett. 35(12), 2088–2090 (2010).
    [Crossref] [PubMed]
  7. Y.-C. Chi, D.-H. Hsieh, C.-T. Tsai, H.-Y. Chen, H.-C. Kuo, and G.-R. Lin, “450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM,” Opt. Express 23(10), 13051–13059 (2015).
    [Crossref] [PubMed]
  8. D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
    [Crossref]
  9. S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
    [Crossref]
  10. A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
    [Crossref]
  11. B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” J. Oceanic Eng. 33(4), 513–521 (2008).
    [Crossref]
  12. S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
    [Crossref]
  13. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
    [Crossref] [PubMed]
  14. S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38(19), 3792–3794 (2013).
    [Crossref] [PubMed]
  15. H. M. Oubei, C. Li, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode,” Opt. Express 23(16), 20743–20748 (2015).
    [Crossref]
  16. K. Nakamura, I. Mizukoshi, and M. Hanawa, “Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel,” Opt. Express 23(2), 1558–1566 (2015).
    [Crossref] [PubMed]
  17. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic Press, 2009), Chap. 2.
  18. Y. M. Lin and P. L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Top. Area Commun. 28(6), 791–799 (2010).
    [Crossref]
  19. J. W. Giles and I. N. Bankman, “Underwater optical communications systems. Part 2: basic design considerations,” in Proceedings of IEEE Military Communications Conf., Vol. 3 (MILCOM, 2005), pp. 1700–1705.
    [Crossref]
  20. N. G. Jerlov, Marine Optics (Elsevier Science, 1976).

2015 (3)

2014 (3)

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

W. Cox and J. Muth, “Simulating channel losses in an underwater optical communication system,” J. Opt. Soc. Am. A 31(5), 920–934 (2014).
[Crossref] [PubMed]

2013 (2)

2011 (1)

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

2010 (3)

Y. M. Lin and P. L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Top. Area Commun. 28(6), 791–799 (2010).
[Crossref]

B. Cochenour, L. Mullen, and J. Muth, “Effect of scattering albedo on attenuation and polarization of light underwater,” Opt. Lett. 35(12), 2088–2090 (2010).
[Crossref] [PubMed]

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
[Crossref]

2009 (1)

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
[Crossref]

2008 (3)

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
[Crossref] [PubMed]

2005 (1)

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Akyildiz, I. F.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Alouini, M.-S.

Arnon, S.

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
[Crossref]

Baiden, G.

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
[Crossref]

Bissiri, Y.

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
[Crossref]

Bourennane, S.

Caiti, A.

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Casalino, G.

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Chen, H.-Y.

Chi, Y.-C.

Chun, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Cochenour, B.

B. Cochenour, L. Mullen, and J. Muth, “Effect of scattering albedo on attenuation and polarization of light underwater,” Opt. Lett. 35(12), 2088–2090 (2010).
[Crossref] [PubMed]

B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Cox, W.

Dawson, M. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Dong, Y.

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

Faulkner, G.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Gabriel, C.

Grzanka, S.

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Haas, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Hanawa, M.

Hanson, F.

Hsieh, D.-H.

Kelly, A. E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38(19), 3792–3794 (2013).
[Crossref] [PubMed]

Khalighi, M.

Kuo, H.-C.

Lacovara, P.

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Laux, A. E.

B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Léon, P.

Leszczynski, M.

Li, C.

Lin, G.-R.

Lin, Y. M.

Y. M. Lin and P. L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Top. Area Commun. 28(6), 791–799 (2010).
[Crossref]

Masoti, A.

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
[Crossref]

McKendry, J. J. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Melodia, T.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Mizukoshi, I.

Mullen, L.

Mullen, L. J.

B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

Munafò, A.

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Muth, J.

Najda, S. P.

Nakamura, K.

Ng, T. K.

O’Brien, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Ooi, B. S.

Oubei, H. M.

Park, K.-H.

Perlin, P.

Pompili, D.

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Radic, S.

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Rigaud, V.

Simetti, E.

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Tan, M.

Tang, S.

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

Targowski, G.

Tien, P. L.

Y. M. Lin and P. L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Top. Area Commun. 28(6), 791–799 (2010).
[Crossref]

Tsai, C.-T.

Tsonev, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Turetta, A.

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Videv, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Watson, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

S. Watson, M. Tan, S. P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. E. Kelly, “Visible light communications using a directly modulated 422 nm GaN laser diode,” Opt. Lett. 38(19), 3792–3794 (2013).
[Crossref] [PubMed]

Zhang, X.

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

Ad Hoc Netw. (1)

I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: research challenges,” Ad Hoc Netw. 3(3), 257–279 (2005).
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Area Commun. (1)

Y. M. Lin and P. L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Top. Area Commun. 28(6), 791–799 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride μLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

IEEE Trans. Commun. (1)

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62(1), 226–234 (2014).
[Crossref]

J. Oceanic Eng. (1)

B. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of the beam-spread function for underwater wireless optical communications links,” J. Oceanic Eng. 33(4), 513–521 (2008).
[Crossref]

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Am. A (1)

Mar. Technol. Soc. J. (1)

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Ocean Dyn. (1)

A. Munafò, E. Simetti, A. Turetta, A. Caiti, and G. Casalino, “Autonomous underwater vehicle teams for adaptive ocean sampling: a data-driven approach,” Ocean Dyn. 61(11), 1981–1994 (2011).
[Crossref]

Ocean Eng. (1)

G. Baiden, Y. Bissiri, and A. Masoti, “Paving the way for a future underwater omni-directional wireless optical communication systems,” Ocean Eng. 36(9–10), 633–640 (2009).
[Crossref]

Opt. Eng. (1)

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49(1), 015001 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (3)

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic Press, 2009), Chap. 2.

J. W. Giles and I. N. Bankman, “Underwater optical communications systems. Part 2: basic design considerations,” in Proceedings of IEEE Military Communications Conf., Vol. 3 (MILCOM, 2005), pp. 1700–1705.
[Crossref]

N. G. Jerlov, Marine Optics (Elsevier Science, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup of QAM-OFDM data transmission over 5.4-m underwater wireless optical channel: arbitrary waveform generator (AWG), laser diode (LD), mirror (M1, M2), avalanche photodiode (APD), digital serial analyzer (DSA).
Fig. 2
Fig. 2 Conceptual block diagram for underwater 16-QAM-OFDM transmission.
Fig. 3
Fig. 3 The schematic diagram of the DC offset 16-QAM-OFDM data directly encoded onto the TO-9 packaged blue LD.
Fig. 4
Fig. 4 (a) LIV characteristics of the blue LD at 25°C and (b) optical spectrum of the blue LD at 25°C with increasing bias current.
Fig. 5
Fig. 5 Overall frequency response of the system at different LD bias currents. The dash line shows that the −3 dB bandwidth is approximately 1.1 GHz.
Fig. 6
Fig. 6 Transmission performance of the blue LD carried 1 GHz 16-QAM OFDM data: (a) measured BER versus laser bias current, (b) constellation diagram at 70 mA.
Fig. 7
Fig. 7 Transmission performance of the blue LD delivered 16-QAM-OFDM data over 5.4-m water link: (a) Raw data rate and related BER, (b) SNR versus subcarrier index, and (c) Constellation diagram of 1.2 GHz 16-QAM-OFDM signals.
Fig. 8
Fig. 8 Measured BER versus link distance for the 1.2-GHz 16-QAM-OFDM data with corresponding constellation diagrams at 0.6 m and 5.4 m.

Tables (1)

Tables Icon

Table 1 The related parameters of the 16-QAM-OFDM data stream.

Metrics