Abstract

The performance of non-line-of-sight ultraviolet (UV) scattering communication depends largely on atmospheric parameters. In this paper, we consider haze, fog, two common types of aerosols, and introduce the density and size of aerosols as variables to study the channel path loss for the UV scattering communications. We modify a Monte-Carlo based multiple-scattering model and provide fitting functions to replace the complex calculations of Mie theory, which can be used to obtain the atmospheric coefficients and phase functions for the aerosols. Simulation results reveal that, given fixed elevation angles, the channel path loss is related to both communication range, the aerosol density, and size of aerosols. For a short communication range, an increase of aerosol density can reduce the path loss, which improves the performance of UV scattering communication. However, when the communication range is extended, the path loss will fall first and then rise with density of aerosols. This phenomenon also occurs for an increase of fog drop size. The density or size of aerosols that has the lowest path loss is inversely proportional to the communication range.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of optical wireless scattering communication channels over broad spectra

Weihao Liu, Difan Zou, and Zhengyuan Xu
J. Opt. Soc. Am. A 32(3) 486-490 (2015)

Study of effects of obstacle on non-line-of-sight ultraviolet communication links

Hailiang Zhang, Hongwei Yin, Honghui Jia, Juncai Yang, and Shengli Chang
Opt. Express 19(22) 21216-21226 (2011)

Performance analysis of multiple NLOS UV communication cooperative relays over turbulent channels

Ali Refaai, Mohamed Abaza, Mohamed S. El-Mahallawy, and Moustafa H. Aly
Opt. Express 26(16) 19972-19985 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Lavigne, G. Durand, and A. Roblin, “Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid,” Appl. Opt. 45(36), 9140–9150 (2006).
    [Crossref] [PubMed]
  2. A. K. Majumdar, Advanced Free Space Optics (FSO) (Springer, 2015), Ch. 7.
  3. Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
    [Crossref]
  4. G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV Communication for Distributed Sensor Systems,” Proc. SPIE 4126, 83–96 (2000).
    [Crossref]
  5. M. Noshad, M. Brandt-Pearce, and S. G. Wilson, “NLOS UV communications using M-ary Spectral-Amplitude-Coding,” IEEE Trans. Commun. 61(4), 1544–1553 (2013).
    [Crossref]
  6. P. Luo, M. Zhang, D. Han, and Q. Li, “Performance analysis of short-range NLOS UV communication system using Monte Carlo simulation based on measured channel parameters,” Opt. Express 20(21), 23489–23501 (2012).
    [Crossref] [PubMed]
  7. N. Raptisa, E. Roditib, and D. Syvridisa, “Power-spectrum requirements in ultraviolet optical wireless networks,” Proc. SPIE 9354, 9354031–93540315 (2015).
  8. D. P. Young, J. Brewer, J. Chang, T. Chou, J. Kvam, and M. Pugh, “Diffuse mid-UV communication in the presence of obscurants,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (IEEE, 2012), pp. 1061–1064.
    [Crossref]
  9. Q. Gao and G. Chen, “Non-line-of-sight ultraviolet communication based on DHT ACO-OFDM,” Proc. SPIE 8517, 85170D (2012).
    [Crossref]
  10. H. Jia, H. Zhang, H. Yin, S. Chang, and J. Yang, “The experimental research of NLOS UV propagation channel in the atmosphere based on LIA technology,” Proc. SPIE 6783, 67833B1 (2007).
  11. C. Xu and H. Zhang, “Channel analyses over wide optical spectra for long-range scattering communication,” IEEE Commun. Lett. 19(2), 187–190 (2014).
    [Crossref]
  12. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
    [Crossref]
  13. R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. 28(4), 686–695 (2011).
    [Crossref]
  14. R. Tousey and E. O. Hulburt, “Brightness and polarization of the daylight sky at various altitudes above sea level,” J. Opt. Soc. Am. 37(2), 78–92 (1947).
    [Crossref]
  15. E. R. Peck and K. Reeder, “Dispersion of air,” J. Opt. Soc. Am. 62(8), 958–962 (1972).
    [Crossref]
  16. F. X. Kneisys, “The MODTRAN 2/3 and LOWTRAN 7 model,” Rep. (MODTRAN, 1995).
  17. G. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  18. H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. 26(11), 2466–2469 (2009).
    [Crossref]
  19. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19(9), 1505–1509 (1980).
    [Crossref] [PubMed]
  20. W. J. Wiscombe, “Mie scattering calculations: advances in technique and fast, vector-speed computer codes,” Tech. Rep. (NCAR, 1979).
  21. A. Deepak and H. E. Gerber, “Report of the experts meeting on aerosols and their climate effects,” WCP Rep. (WMO, 1983).
  22. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  23. J. A. Zak, “Drop size distributions and related properties of fog for five locations measured from aircraft,” Tech. Rep. (NASA, 1994).
  24. P. G.- Rodrguez and A. D. Kim, “Light propagation in tissues with forward-peaked and large-angle scattering,” Appl. Opt. 47(14), 2599–2609 (2008).
    [Crossref]
  25. L. O. Reynolds and N. J. McCormick, “Approximate two-parameter phase function for light scattering,” J. Opt. Soc. Am. 70(10), 1206–1212 (1980).
    [Crossref]
  26. L. O. Reynolds and N. J. McCormick, “Spectral determination of a two-parametric phase function for polydispersive scattering liquids,” Opt. Express 17(3), 1610–1621 (2009).
    [Crossref]
  27. G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
    [Crossref] [PubMed]
  28. L. Liao, Z. Li, T. Lang, B. M. Sadler, and G. Chen, “Turbulence channel test and analysis for NLOS UV communication,” Proc. SPIE 9224, 92241A1 (2014).
  29. P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, 1962).
  30. C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “FSO systems: Rain, drizzle, fog and haze attenuation at different optical windows propagation,” in International Microwave and Optoelectronics Conference (SBMO/IEEE MTT-S, 2007), pp. 563–568.

2015 (1)

N. Raptisa, E. Roditib, and D. Syvridisa, “Power-spectrum requirements in ultraviolet optical wireless networks,” Proc. SPIE 9354, 9354031–93540315 (2015).

2014 (2)

C. Xu and H. Zhang, “Channel analyses over wide optical spectra for long-range scattering communication,” IEEE Commun. Lett. 19(2), 187–190 (2014).
[Crossref]

L. Liao, Z. Li, T. Lang, B. M. Sadler, and G. Chen, “Turbulence channel test and analysis for NLOS UV communication,” Proc. SPIE 9224, 92241A1 (2014).

2013 (1)

M. Noshad, M. Brandt-Pearce, and S. G. Wilson, “NLOS UV communications using M-ary Spectral-Amplitude-Coding,” IEEE Trans. Commun. 61(4), 1544–1553 (2013).
[Crossref]

2012 (2)

2011 (1)

R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. 28(4), 686–695 (2011).
[Crossref]

2010 (1)

2009 (3)

L. O. Reynolds and N. J. McCormick, “Spectral determination of a two-parametric phase function for polydispersive scattering liquids,” Opt. Express 17(3), 1610–1621 (2009).
[Crossref]

H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. 26(11), 2466–2469 (2009).
[Crossref]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

2008 (2)

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

P. G.- Rodrguez and A. D. Kim, “Light propagation in tissues with forward-peaked and large-angle scattering,” Appl. Opt. 47(14), 2599–2609 (2008).
[Crossref]

2007 (1)

H. Jia, H. Zhang, H. Yin, S. Chang, and J. Yang, “The experimental research of NLOS UV propagation channel in the atmosphere based on LIA technology,” Proc. SPIE 6783, 67833B1 (2007).

2006 (1)

2000 (1)

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV Communication for Distributed Sensor Systems,” Proc. SPIE 4126, 83–96 (2000).
[Crossref]

1980 (2)

1973 (1)

1972 (1)

1947 (1)

Bohren, G. F.

G. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brandt-Pearce, M.

M. Noshad, M. Brandt-Pearce, and S. G. Wilson, “NLOS UV communications using M-ary Spectral-Amplitude-Coding,” IEEE Trans. Commun. 61(4), 1544–1553 (2013).
[Crossref]

Brewer, J.

D. P. Young, J. Brewer, J. Chang, T. Chou, J. Kvam, and M. Pugh, “Diffuse mid-UV communication in the presence of obscurants,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (IEEE, 2012), pp. 1061–1064.
[Crossref]

Chang, J.

D. P. Young, J. Brewer, J. Chang, T. Chou, J. Kvam, and M. Pugh, “Diffuse mid-UV communication in the presence of obscurants,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (IEEE, 2012), pp. 1061–1064.
[Crossref]

Chang, S.

H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. 26(11), 2466–2469 (2009).
[Crossref]

H. Jia, H. Zhang, H. Yin, S. Chang, and J. Yang, “The experimental research of NLOS UV propagation channel in the atmosphere based on LIA technology,” Proc. SPIE 6783, 67833B1 (2007).

Chen, G.

L. Liao, Z. Li, T. Lang, B. M. Sadler, and G. Chen, “Turbulence channel test and analysis for NLOS UV communication,” Proc. SPIE 9224, 92241A1 (2014).

Q. Gao and G. Chen, “Non-line-of-sight ultraviolet communication based on DHT ACO-OFDM,” Proc. SPIE 8517, 85170D (2012).
[Crossref]

G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
[Crossref] [PubMed]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

Chou, T.

D. P. Young, J. Brewer, J. Chang, T. Chou, J. Kvam, and M. Pugh, “Diffuse mid-UV communication in the presence of obscurants,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (IEEE, 2012), pp. 1061–1064.
[Crossref]

Colvero, C. P.

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “FSO systems: Rain, drizzle, fog and haze attenuation at different optical windows propagation,” in International Microwave and Optoelectronics Conference (SBMO/IEEE MTT-S, 2007), pp. 563–568.

Cordeiro, M. C. R.

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “FSO systems: Rain, drizzle, fog and haze attenuation at different optical windows propagation,” in International Microwave and Optoelectronics Conference (SBMO/IEEE MTT-S, 2007), pp. 563–568.

Deepak, A.

A. Deepak and H. E. Gerber, “Report of the experts meeting on aerosols and their climate effects,” WCP Rep. (WMO, 1983).

Ding, H.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

Drost, R. J.

R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. 28(4), 686–695 (2011).
[Crossref]

Durand, G.

Gao, Q.

Q. Gao and G. Chen, “Non-line-of-sight ultraviolet communication based on DHT ACO-OFDM,” Proc. SPIE 8517, 85170D (2012).
[Crossref]

Gerber, H. E.

A. Deepak and H. E. Gerber, “Report of the experts meeting on aerosols and their climate effects,” WCP Rep. (WMO, 1983).

Griffin, M. K.

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV Communication for Distributed Sensor Systems,” Proc. SPIE 4126, 83–96 (2000).
[Crossref]

Hale, G. M.

Han, D.

Huffman, D. R.

G. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hulburt, E. O.

Iyengar, M.

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV Communication for Distributed Sensor Systems,” Proc. SPIE 4126, 83–96 (2000).
[Crossref]

Jia, H.

H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. 26(11), 2466–2469 (2009).
[Crossref]

H. Jia, H. Zhang, H. Yin, S. Chang, and J. Yang, “The experimental research of NLOS UV propagation channel in the atmosphere based on LIA technology,” Proc. SPIE 6783, 67833B1 (2007).

Kaushik, S.

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV Communication for Distributed Sensor Systems,” Proc. SPIE 4126, 83–96 (2000).
[Crossref]

Kim, A. D.

Kneisys, F. X.

F. X. Kneisys, “The MODTRAN 2/3 and LOWTRAN 7 model,” Rep. (MODTRAN, 1995).

Kruse, P. W.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, 1962).

Kvam, J.

D. P. Young, J. Brewer, J. Chang, T. Chou, J. Kvam, and M. Pugh, “Diffuse mid-UV communication in the presence of obscurants,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (IEEE, 2012), pp. 1061–1064.
[Crossref]

Lang, T.

L. Liao, Z. Li, T. Lang, B. M. Sadler, and G. Chen, “Turbulence channel test and analysis for NLOS UV communication,” Proc. SPIE 9224, 92241A1 (2014).

Lavigne, C.

Li, Q.

Li, Z.

L. Liao, Z. Li, T. Lang, B. M. Sadler, and G. Chen, “Turbulence channel test and analysis for NLOS UV communication,” Proc. SPIE 9224, 92241A1 (2014).

Liao, L.

L. Liao, Z. Li, T. Lang, B. M. Sadler, and G. Chen, “Turbulence channel test and analysis for NLOS UV communication,” Proc. SPIE 9224, 92241A1 (2014).

Luo, P.

Majumdar, A. K.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

A. K. Majumdar, Advanced Free Space Optics (FSO) (Springer, 2015), Ch. 7.

McCormick, N. J.

McGlauchlin, L. D.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, 1962).

McQuistan, R. B.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, 1962).

Moore, T. J.

R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. 28(4), 686–695 (2011).
[Crossref]

Nischan, M.

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV Communication for Distributed Sensor Systems,” Proc. SPIE 4126, 83–96 (2000).
[Crossref]

Noshad, M.

M. Noshad, M. Brandt-Pearce, and S. G. Wilson, “NLOS UV communications using M-ary Spectral-Amplitude-Coding,” IEEE Trans. Commun. 61(4), 1544–1553 (2013).
[Crossref]

Peck, E. R.

Pugh, M.

D. P. Young, J. Brewer, J. Chang, T. Chou, J. Kvam, and M. Pugh, “Diffuse mid-UV communication in the presence of obscurants,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (IEEE, 2012), pp. 1061–1064.
[Crossref]

Querry, M. R.

Raptisa, N.

N. Raptisa, E. Roditib, and D. Syvridisa, “Power-spectrum requirements in ultraviolet optical wireless networks,” Proc. SPIE 9354, 9354031–93540315 (2015).

Reeder, K.

Reynolds, L. O.

Roblin, A.

Roditib, E.

N. Raptisa, E. Roditib, and D. Syvridisa, “Power-spectrum requirements in ultraviolet optical wireless networks,” Proc. SPIE 9354, 9354031–93540315 (2015).

Rodrguez, P. G.-

Sadler, B. M.

L. Liao, Z. Li, T. Lang, B. M. Sadler, and G. Chen, “Turbulence channel test and analysis for NLOS UV communication,” Proc. SPIE 9224, 92241A1 (2014).

R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. 28(4), 686–695 (2011).
[Crossref]

G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
[Crossref] [PubMed]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

Shaw, G. A.

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV Communication for Distributed Sensor Systems,” Proc. SPIE 4126, 83–96 (2000).
[Crossref]

Syvridisa, D.

N. Raptisa, E. Roditib, and D. Syvridisa, “Power-spectrum requirements in ultraviolet optical wireless networks,” Proc. SPIE 9354, 9354031–93540315 (2015).

Tousey, R.

von der Weid, J. P.

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “FSO systems: Rain, drizzle, fog and haze attenuation at different optical windows propagation,” in International Microwave and Optoelectronics Conference (SBMO/IEEE MTT-S, 2007), pp. 563–568.

Wilson, S. G.

M. Noshad, M. Brandt-Pearce, and S. G. Wilson, “NLOS UV communications using M-ary Spectral-Amplitude-Coding,” IEEE Trans. Commun. 61(4), 1544–1553 (2013).
[Crossref]

Wiscombe, W. J.

W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19(9), 1505–1509 (1980).
[Crossref] [PubMed]

W. J. Wiscombe, “Mie scattering calculations: advances in technique and fast, vector-speed computer codes,” Tech. Rep. (NCAR, 1979).

Xu, C.

C. Xu and H. Zhang, “Channel analyses over wide optical spectra for long-range scattering communication,” IEEE Commun. Lett. 19(2), 187–190 (2014).
[Crossref]

Xu, Z.

G. Chen, Z. Xu, and B. M. Sadler, “Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels,” Opt. Express 18(10), 10500–10509 (2010).
[Crossref] [PubMed]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

Yang, J.

H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. 26(11), 2466–2469 (2009).
[Crossref]

H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. 26(11), 2466–2469 (2009).
[Crossref]

H. Jia, H. Zhang, H. Yin, S. Chang, and J. Yang, “The experimental research of NLOS UV propagation channel in the atmosphere based on LIA technology,” Proc. SPIE 6783, 67833B1 (2007).

Yin, H.

H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. 26(11), 2466–2469 (2009).
[Crossref]

H. Jia, H. Zhang, H. Yin, S. Chang, and J. Yang, “The experimental research of NLOS UV propagation channel in the atmosphere based on LIA technology,” Proc. SPIE 6783, 67833B1 (2007).

Young, D. P.

D. P. Young, J. Brewer, J. Chang, T. Chou, J. Kvam, and M. Pugh, “Diffuse mid-UV communication in the presence of obscurants,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (IEEE, 2012), pp. 1061–1064.
[Crossref]

Zak, J. A.

J. A. Zak, “Drop size distributions and related properties of fog for five locations measured from aircraft,” Tech. Rep. (NASA, 1994).

Zhang, H.

C. Xu and H. Zhang, “Channel analyses over wide optical spectra for long-range scattering communication,” IEEE Commun. Lett. 19(2), 187–190 (2014).
[Crossref]

H. Jia, H. Zhang, H. Yin, S. Chang, and J. Yang, “The experimental research of NLOS UV propagation channel in the atmosphere based on LIA technology,” Proc. SPIE 6783, 67833B1 (2007).

Zhang, M.

Appl. Opt. (4)

IEEE Commun. Lett. (1)

C. Xu and H. Zhang, “Channel analyses over wide optical spectra for long-range scattering communication,” IEEE Commun. Lett. 19(2), 187–190 (2014).
[Crossref]

IEEE Commun. Mag. (1)

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009).
[Crossref]

IEEE Trans. Commun. (1)

M. Noshad, M. Brandt-Pearce, and S. G. Wilson, “NLOS UV communications using M-ary Spectral-Amplitude-Coding,” IEEE Trans. Commun. 61(4), 1544–1553 (2013).
[Crossref]

J. Opt. Soc. Am. (5)

R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. 28(4), 686–695 (2011).
[Crossref]

R. Tousey and E. O. Hulburt, “Brightness and polarization of the daylight sky at various altitudes above sea level,” J. Opt. Soc. Am. 37(2), 78–92 (1947).
[Crossref]

E. R. Peck and K. Reeder, “Dispersion of air,” J. Opt. Soc. Am. 62(8), 958–962 (1972).
[Crossref]

H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. 26(11), 2466–2469 (2009).
[Crossref]

L. O. Reynolds and N. J. McCormick, “Approximate two-parameter phase function for light scattering,” J. Opt. Soc. Am. 70(10), 1206–1212 (1980).
[Crossref]

Opt. Express (3)

Proc. SPIE (5)

N. Raptisa, E. Roditib, and D. Syvridisa, “Power-spectrum requirements in ultraviolet optical wireless networks,” Proc. SPIE 9354, 9354031–93540315 (2015).

G. A. Shaw, M. Nischan, M. Iyengar, S. Kaushik, and M. K. Griffin, “NLOS UV Communication for Distributed Sensor Systems,” Proc. SPIE 4126, 83–96 (2000).
[Crossref]

Q. Gao and G. Chen, “Non-line-of-sight ultraviolet communication based on DHT ACO-OFDM,” Proc. SPIE 8517, 85170D (2012).
[Crossref]

H. Jia, H. Zhang, H. Yin, S. Chang, and J. Yang, “The experimental research of NLOS UV propagation channel in the atmosphere based on LIA technology,” Proc. SPIE 6783, 67833B1 (2007).

L. Liao, Z. Li, T. Lang, B. M. Sadler, and G. Chen, “Turbulence channel test and analysis for NLOS UV communication,” Proc. SPIE 9224, 92241A1 (2014).

Other (9)

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley, 1962).

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “FSO systems: Rain, drizzle, fog and haze attenuation at different optical windows propagation,” in International Microwave and Optoelectronics Conference (SBMO/IEEE MTT-S, 2007), pp. 563–568.

J. A. Zak, “Drop size distributions and related properties of fog for five locations measured from aircraft,” Tech. Rep. (NASA, 1994).

W. J. Wiscombe, “Mie scattering calculations: advances in technique and fast, vector-speed computer codes,” Tech. Rep. (NCAR, 1979).

A. Deepak and H. E. Gerber, “Report of the experts meeting on aerosols and their climate effects,” WCP Rep. (WMO, 1983).

F. X. Kneisys, “The MODTRAN 2/3 and LOWTRAN 7 model,” Rep. (MODTRAN, 1995).

G. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983).

A. K. Majumdar, Advanced Free Space Optics (FSO) (Springer, 2015), Ch. 7.

D. P. Young, J. Brewer, J. Chang, T. Chou, J. Kvam, and M. Pugh, “Diffuse mid-UV communication in the presence of obscurants,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (IEEE, 2012), pp. 1061–1064.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structure of non-line-of-sight UV communication link.
Fig. 2
Fig. 2 Mie-theory parameters fitting for fog droplets.
Fig. 3
Fig. 3 Phase functions for haze particle and fog droplets.
Fig. 4
Fig. 4 Path loss changing with haze density. No fog droplets exist.
Fig. 5
Fig. 5 Path loss changing with fog density. Haze density is 109 m−3 and fog radius is 1μm.
Fig. 6
Fig. 6 Path loss changing with fog radius. Haze density is 109 m−3 and fog density is 108 m−3.

Tables (2)

Tables Icon

Table 1 Modifications for the steps of pseudo-code in [13]

Tables Icon

Table 2 Simulation Parameters

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δ s = ln η ( s ) k s
k s Ray = 8 π 3 3 ( m 1 ) 2 λ 4 N 6 ( 1 + δ ) 6 7 δ ( 3 + 1 δ 1 + δ )
( m 0 1 ) × 10 8 = 8060.51 + 2480990 132.274 λ 2 + 17455.7 39.32957 λ 2 .
k s Mie = N v Q sca ( R ) π R 2 , and k a Mie = N v Q abs ( R ) π R 2
{ Q sca ( R ) = 2 x 2 n = 1 ( 2 n + 1 ) ( | a n | 2 + | b n | 2 ) Q ext ( R ) = 2 x 2 n = 1 ( 2 n + 1 ) ( a n + b n ) Q abs ( R ) = Q ext ( R ) Q sca ( R )
{ a n = m ψ n ( m x ) ψ n ( x ) ψ n ( x ) ψ n ( m x ) m ψ n ( m x ) ξ n ( x ) ξ n ( x ) ψ n ( m x ) b n = ψ n ( m x ) ψ n ( x ) m ψ n ( x ) ψ n ( m x ) ψ n ( m x ) ξ n ( x ) m ξ n ( x ) ψ n ( m x )
Q sca fog ( R f ) = 2 x 2 ( 5 × 10 14 ) R f 1.977 = 5 × 10 14 2 π 2 λ 2 R f 0.023 .
p tot ( μ ) = k s Ray k s p ray ( μ ) + k s haz k s p fog ( μ ) + k s fog k s p fog ( μ )
p ray ( μ ) = 3 [ 1 + 3 γ + ( 1 γ ) μ 2 ] 16 π ( 1 + 2 γ )
p haz ( μ ) = 1 g h 2 4 π [ 1 ( 1 + g h 2 2 g h μ ) 3 2 + 3 μ 2 1 4 ( 1 + g h 2 ) 3 2 ]
g = 4 x 2 Q sca n = 1 [ n ( n + 2 ) n + 1 ( a n a n + 1 * + b n b n + 1 * ) + 2 n + 1 n ( n + 1 ) ( a n b n ) ] .
p fog ( μ ) = α g ( 1 g f 2 ( R f ) ) 2 α π ( 1 + g f 2 ( R f ) 2 g f ( R f ) μ ) α + 1 [ ( 1 + g f ( R f ) ) 2 α ( 1 g f ( R f ) ) 2 α ]
g f ( R f ) = 2 x 2 Q sca fog ( R f ) ( 2.594 × 10 14 ) R f 1.993 = 1.0376 R f 0.016 .
α = ln ( p fog ( 1 ) p fog ( 1 ) ) 4 arctanh ( g f ( R f ) ) 1
p fog ( μ ) = λ 2 8 π 2 ( | S 1 ( μ ) | 2 + | S 2 ( μ ) | 2 )
{ S 1 ( μ ) = n = 1 2 n + 1 n ( n + 1 ) [ a n π n + b n τ n ] S 2 ( μ ) = n = 1 2 n + 1 n ( n + 1 ) [ a n τ n + b n π n ]
{ π n = 2 n 1 n 1 μ π n 1 n n 1 π n 2 τ n = n μ π n ( n + 1 ) π n 1 .
p fog ( 1 ) = ( 1.91 × 1029 ) R f 3.991
p fog ( 1 ) = ( 5.421 × 10 12 ) R f 1.617 .

Metrics