Abstract

LED lighting systems with large color gamuts, with multiple LEDs spanning the visible spectrum, offer the potential of increased lighting efficiency, improved human health and productivity, and visible light communications addressing the explosive growth in wireless communications. The control of this “smart lighting system” requires a silicon-integrated-circuit-compatible, visible, plenoptic (angle and wavelength) detector. A detector element, based on an offset-grating-coupled dielectric waveguide structure and a silicon photodetector, is demonstrated with an angular resolution of less than 1° and a wavelength resolution of less than 5 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications

James Grant, Mitchell Kenney, Yash D. Shah, Ivonne Escorcia-Carranza, and David R. S. Cumming
Opt. Express 26(8) 10408-10420 (2018)

Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths

Sebastian Romero-García, Florian Merget, Frank Zhong, Hod Finkelstein, and Jeremy Witzens
Opt. Express 21(12) 14036-14046 (2013)

Complete plenoptic imaging using a single detector

Shuaishuai Zhu, Liang Gao, Yu Zhang, Jie Lin, and Peng Jin
Opt. Express 26(20) 26495-26510 (2018)

References

  • View by:
  • |
  • |
  • |

  1. See, for example, http://smartlighting.rpi.edu .
  2. P. Butala, H. Egala, P. Zarkesh-Ha, and T. D. C. Little, “Multi-wavelength visible light communication system design,” Globecom 2014 Workshop on Optical Wireless Commun. (Austin, TX, Dec. 2014).
    [Crossref]
  3. P. R. Boyce, “Review: the impact of light in buildings on human health,” Indoor Built Environ. 19(1), 8–20 (2010).
    [Crossref]
  4. R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
    [Crossref] [PubMed]
  5. C.-C. Chang, Y.-J. Su, U. Kurokawa, and B. I. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sens. J. 12(5), 1025–1032 (2012).
  6. C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
    [Crossref]
  7. J. Adams, K. Parulshi, and K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18(6), 20–30 (1998).
    [Crossref]
  8. www.ams.com .
  9. http://www.pixelteq.com/ .
  10. Q. Chen and D. R. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
    [Crossref] [PubMed]
  11. T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
    [Crossref] [PubMed]
  12. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref] [PubMed]
  13. Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
    [Crossref]
  14. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
    [Crossref] [PubMed]
  15. D. Shin, S. Tibuleac, Th. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37(9), 2634–2646 (1998).
    [Crossref]
  16. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  17. M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “A grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
    [Crossref]
  18. D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [Crossref]
  19. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
    [Crossref] [PubMed]
  20. S. R. J. Brueck, “Optical and interferometric lithography - nanotechnology enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
    [Crossref]
  21. M. Hossain, P. Zarkesh-Ha, J. David, and M. Hayat, “Low breakdown voltage CMOS compatible p-n junction avalanche photodiode,” IEEE Photonics Conference (IPC), 170–171, Oct. 2014.
    [Crossref]
  22. K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9(1), 29–42 (1973).
    [Crossref]

2014 (2)

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22(2), 1277–1286 (2014).
[Crossref] [PubMed]

2013 (2)

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[Crossref]

2012 (3)

C.-C. Chang, Y.-J. Su, U. Kurokawa, and B. I. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sens. J. 12(5), 1025–1032 (2012).

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

2010 (3)

Q. Chen and D. R. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

P. R. Boyce, “Review: the impact of light in buildings on human health,” Indoor Built Environ. 19(1), 8–20 (2010).
[Crossref]

2005 (1)

S. R. J. Brueck, “Optical and interferometric lithography - nanotechnology enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
[Crossref]

2002 (1)

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

1998 (2)

D. Shin, S. Tibuleac, Th. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37(9), 2634–2646 (1998).
[Crossref]

J. Adams, K. Parulshi, and K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18(6), 20–30 (1998).
[Crossref]

1993 (1)

1973 (1)

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9(1), 29–42 (1973).
[Crossref]

1970 (1)

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “A grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Adams, J.

J. Adams, K. Parulshi, and K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18(6), 20–30 (1998).
[Crossref]

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Baets, R.

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Berroth, M.

Berson, D. M.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Bienstman, P.

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Bogarts, W.

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Boyce, P. R.

P. R. Boyce, “Review: the impact of light in buildings on human health,” Indoor Built Environ. 19(1), 8–20 (2010).
[Crossref]

Brainard, G. C.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Brown, T. M.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Brueck, S. R. J.

S. R. J. Brueck, “Optical and interferometric lithography - nanotechnology enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
[Crossref]

Burghartz, J.

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Butschke, J.

Carson, J. J. L.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

Chang, C.-C.

C.-C. Chang, Y.-J. Su, U. Kurokawa, and B. I. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sens. J. 12(5), 1025–1032 (2012).

Chang, W. S. C.

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9(1), 29–42 (1973).
[Crossref]

Chen, Q.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Q. Chen and D. R. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

Chitnis, D.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Choi, B. I.

C.-C. Chang, Y.-J. Su, U. Kurokawa, and B. I. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sens. J. 12(5), 1025–1032 (2012).

Chow, C. W.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[Crossref]

Collins, S.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Cooper, H. M.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Cumming, D. R.

Cumming, D. R. S.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Czeisler, C. A.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “A grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

David, J.

M. Hossain, P. Zarkesh-Ha, J. David, and M. Hayat, “Low breakdown voltage CMOS compatible p-n junction avalanche photodiode,” IEEE Photonics Conference (IPC), 170–171, Oct. 2014.
[Crossref]

De Mesel, K.

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Drysdale, T. D.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Figueiro, M. G.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Gamlin, P. D.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Guo, L. J.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Hayat, M.

M. Hossain, P. Zarkesh-Ha, J. David, and M. Hayat, “Low breakdown voltage CMOS compatible p-n junction avalanche photodiode,” IEEE Photonics Conference (IPC), 170–171, Oct. 2014.
[Crossref]

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “A grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Hossain, M.

M. Hossain, P. Zarkesh-Ha, J. David, and M. Hayat, “Low breakdown voltage CMOS compatible p-n junction avalanche photodiode,” IEEE Photonics Conference (IPC), 170–171, Oct. 2014.
[Crossref]

Huang, P. Y.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[Crossref]

Kaminska, B.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

Krauss, T. F.

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “A grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Kunze, A.

Kurokawa, U.

C.-C. Chang, Y.-J. Su, U. Kurokawa, and B. I. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sens. J. 12(5), 1025–1032 (2012).

Letzkus, F.

Liu, Y. F.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[Crossref]

Lockley, S. W.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Lucas, R. J.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Luo, X.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Magnusson, R.

D. Shin, S. Tibuleac, Th. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37(9), 2634–2646 (1998).
[Crossref]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

Maldonado, Th.

D. Shin, S. Tibuleac, Th. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37(9), 2634–2646 (1998).
[Crossref]

Moerman, I.

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Najiminaini, M.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

O’Hagan, J. B.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Ogawa, K.

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9(1), 29–42 (1973).
[Crossref]

Parulshi, K.

J. Adams, K. Parulshi, and K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18(6), 20–30 (1998).
[Crossref]

Peirson, S. N.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Price, L. L.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Provencio, I.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Rosenbaum, F. J.

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9(1), 29–42 (1973).
[Crossref]

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “A grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

Shin, D.

D. Shin, S. Tibuleac, Th. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37(9), 2634–2646 (1998).
[Crossref]

Skene, D. J.

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Sopori, B. L.

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9(1), 29–42 (1973).
[Crossref]

Spaulding, K.

J. Adams, K. Parulshi, and K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18(6), 20–30 (1998).
[Crossref]

Su, Y.-J.

C.-C. Chang, Y.-J. Su, U. Kurokawa, and B. I. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sens. J. 12(5), 1025–1032 (2012).

Tailaert, D.

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Tibuleac, S.

D. Shin, S. Tibuleac, Th. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37(9), 2634–2646 (1998).
[Crossref]

Van Daele, P.

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Vasefi, F.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

Verstuyft, S.

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Vogel, W.

Walls, K.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Wang, S. S.

Wu, Y. K.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Xu, T.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Yeh, C. H.

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[Crossref]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Zaoui, W. S.

Zarkesh-Ha, P.

M. Hossain, P. Zarkesh-Ha, J. David, and M. Hayat, “Low breakdown voltage CMOS compatible p-n junction avalanche photodiode,” IEEE Photonics Conference (IPC), 170–171, Oct. 2014.
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, “A grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett. 16(12), 523–525 (1970).
[Crossref]

IEEE J. Quantum Electron. (2)

D. Tailaert, W. Bogarts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9(1), 29–42 (1973).
[Crossref]

IEEE Micro (1)

J. Adams, K. Parulshi, and K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18(6), 20–30 (1998).
[Crossref]

IEEE Photonics J. (1)

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photonics J. 5(2), 7900709 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

IEEE Sens. J. (1)

C.-C. Chang, Y.-J. Su, U. Kurokawa, and B. I. Choi, “Interference rejection using filter-based sensor array in VLC systems,” IEEE Sens. J. 12(5), 1025–1032 (2012).

Indoor Built Environ. (1)

P. R. Boyce, “Review: the impact of light in buildings on human health,” Indoor Built Environ. 19(1), 8–20 (2010).
[Crossref]

Nano Lett. (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Opt. Eng. (1)

D. Shin, S. Tibuleac, Th. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37(9), 2634–2646 (1998).
[Crossref]

Opt. Express (2)

Proc. IEEE (1)

S. R. J. Brueck, “Optical and interferometric lithography - nanotechnology enablers,” Proc. IEEE 93(10), 1704–1721 (2005).
[Crossref]

Sci. Rep. (1)

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

Trends Neurosci. (1)

R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene, and G. C. Brainard, “Measuring and using light in the melanopsin age,” Trends Neurosci. 37(1), 1–9 (2014).
[Crossref] [PubMed]

Other (5)

See, for example, http://smartlighting.rpi.edu .

P. Butala, H. Egala, P. Zarkesh-Ha, and T. D. C. Little, “Multi-wavelength visible light communication system design,” Globecom 2014 Workshop on Optical Wireless Commun. (Austin, TX, Dec. 2014).
[Crossref]

www.ams.com .

http://www.pixelteq.com/ .

M. Hossain, P. Zarkesh-Ha, J. David, and M. Hayat, “Low breakdown voltage CMOS compatible p-n junction avalanche photodiode,” IEEE Photonics Conference (IPC), 170–171, Oct. 2014.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the angle-of-incidence and wavelength integrated sensor concept; (b) Demonstration of waveguide coupling and propagation for a green laser source. The grating extends across the entire device region and the light coupled from the waveguide mode to free space is observed. The cover over the detector area to eliminate direct illumination of the detector element is not yet implemented. See text for details of the waveguide and grating structure.
Fig. 2
Fig. 2 Experimental arrangement. All of the optical components are mounted on a computer controlled arm that rotates about the top grating on the waveguide at a position offset from the photodetector junction. Contacts are etched and metalized on the top surface of the silicon wafer and probes are used in these initial experiments.
Fig. 3
Fig. 3 Angular resolution of a grating coupled waveguide detector for RGB laser sources. The expanded views show the TE (solid) and TM (dotted) experiments and simulations (black lines).The bottom panel shows the results with the same waveguide with grating periods of 320- and 380-nm. The 320-nm grating results are offset and expanded in the top panels and compared with simulation.
Fig. 4
Fig. 4 (a) Wavelength vs. coupling angle for different grating periods. Multiple orders of the grating are shown. (e.g. the notation 800/2 refers the second order of a 800 nm pitch grating). The experimental points are indicated; (b) Wavelength vs. grating period at a fixed angle (periods are indicated at the top of the figure, the fixed angles are indicated at the bottom of the figure. Both forward and backward scattering regimes are indicated. For both figures the solid lines are TE modes and the dotted lines are the TM modes.
Fig. 5
Fig. 5 Simulated intensity in the waveguide relative to the incident intensity for two different coupling widths. The depth of the grating into the top cladding is the parameter with a deeper etch corresponding to an increased coupling, see text for details. The drop in the peak intensity at high coupling strength is due to re-radiation into the transmitted/reflected beams.
Fig. 6
Fig. 6 (a) Dual detector configuration with a single input grating area. (b) separation of red (652.3 nm; backward coupled) and green (532.2 nm; forward coupled) wavelengths incident on the same spot of the grating coupler.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

± k i n c sin θ i n c ± 2 π / d = k T E , T M ( λ i n c )
I m o d e / I i n = ( η / α ) ( 1 e α L ) 2

Metrics