Abstract

We report a novel approach to reconstruct the cross-sectional profile of fabricated hollow-core photonic bandgap fibers from scanning electron microscope images. Finite element simulations on the reconstructed geometries achieve a remarkable match with the measured transmission window, surface mode position and attenuation. The agreement between estimated scattering loss from surface roughness and measured loss values indicates that structural distortions, in particular the uneven distribution of glass across the thin silica struts on the core boundary, have a strong impact on the loss. This provides insight into the differences between idealized models and fabricated fibers, which could be key to further fiber loss reduction.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of structural distortions on the performance of hollow-core photonic bandgap fibers

Eric Numkam Fokoua, David J. Richardson, and Francesco Poletti
Opt. Express 22(3) 2735-2744 (2014)

Control of surface modes in low loss hollow-core photonic bandgap fibers

R. Amezcua-Correa, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight
Opt. Express 16(2) 1142-1149 (2008)

Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber

M. N. Petrovich, F. Poletti, J. P. Wooler, A.M. Heidt, N.K. Baddela, Z. Li, D.R. Gray, R. Slavík, F. Parmigiani, N.V. Wheeler, J.R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, John O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F.C. Garcia Gunning, A.D. Ellis, P. Petropoulos, S.U. Alam, and D.J. Richardson
Opt. Express 21(23) 28559-28569 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technologies and applications,” Nano. Photonics 2(5–6), 315–340 (2013).
  2. M.-J. Li, J. A. West, and K. W. Koch, “Modeling effects of structural distortions on air-core photonic bandgap fibers,” J. Lightwave Technol. 25, 2463–2468 (2007).
    [Crossref]
  3. F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers”, in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2006), paper 215945.
  4. E. Numkam Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
    [Crossref]
  5. K. Z. Aghaie, M. J. F. Digonnet, and S. Fan, “Experimental assessment of the accuracy of an advanced photonic bandgap fiber model”, J. Lightwave Technol. 31, 1015–1022 (2007).
    [Crossref]
  6. E. Numkam Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38(9), 1382–1384 (2013).
    [Crossref]
  7. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14, 7329–7341 (2006).
    [Crossref] [PubMed]
  8. K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003).
    [Crossref] [PubMed]
  9. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  10. E. Numkam Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
    [Crossref]
  11. M.-C. Phan-Huy, J.-M. Moison, J. A. Levenson, S. Richard, G. Melin, M. Douay, and Y. Quiquempois, “Surface roughness and light scattering in a small effective area microstructured fiber,” J. Lightwave Technol. 27, 1597–1604 (2009).
    [Crossref]
  12. C. Brun, X. Buet, B. Bresson, M. S. Capelle, M. Ciccotti, A. Ghomari, P. Lecomte, J. P. Roger, M. N. Petrovich, F. Poletti, D. J. Richardson, D. Vandembroucq, and G. Tessier, “Picometer-scale surface roughness measurements inside hollow glass fibres,” Opt. Express 22, 29554–29567 (2014).
    [Crossref]
  13. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
    [Crossref] [PubMed]
  14. T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Euro. Phys. J. B 56, 121–126 (2006).
    [Crossref]
  15. Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
    [Crossref]
  16. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
    [Crossref]
  17. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  18. L. Grüner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle, and B. Pálsdóttir, “Few mode transmission fiber with low DGD, low mode coupling, and low loss,” J. Lightwave Technol. 30, 3693–3698 (2012).
    [Crossref]
  19. H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, “Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers,” Opt. Express 12, 3436–3442 (2004).
    [Crossref] [PubMed]
  20. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam Fokoua, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, P. Petropoulos, S.-U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 microns in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
    [Crossref]
  21. N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
    [Crossref] [PubMed]
  22. M. N. Petrovich, A. M. Heidt, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “High sensitivity methane and ethane detection using low-loss mid-IR hollow-core photonic bandgap fibers,” in 23rd International Conference on Optical Fiber Sensors (OFS23, 2014), paper OF100-37.
  23. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of oh absorption bands in synthetic silica,” J. Non-Crystal. Solids 203, 19–26 (1996).
    [Crossref]

2014 (3)

2013 (4)

2012 (2)

2009 (1)

2007 (2)

2006 (2)

2005 (2)

2004 (1)

2003 (1)

1996 (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of oh absorption bands in synthetic silica,” J. Non-Crystal. Solids 203, 19–26 (1996).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Aghaie, K. Z.

Alam, S.-U.

Amezcua-Correa, R.

F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers”, in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2006), paper 215945.

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Baddela, N. K.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam Fokoua, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, P. Petropoulos, S.-U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 microns in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

E. Numkam Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38(9), 1382–1384 (2013).
[Crossref]

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

M. N. Petrovich, A. M. Heidt, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “High sensitivity methane and ethane detection using low-loss mid-IR hollow-core photonic bandgap fibers,” in 23rd International Conference on Optical Fiber Sensors (OFS23, 2014), paper OF100-37.

Bird, D. M.

Birks, T. A.

Bresson, B.

Broderick, N. G.

F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers”, in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2006), paper 215945.

Brun, C.

Buet, X.

Capelle, M. S.

Chen, Y.

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

Ciccotti, M.

Couny, F.

Digonnet, M. J. F.

Douay, M.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of oh absorption bands in synthetic silica,” J. Non-Crystal. Solids 203, 19–26 (1996).
[Crossref]

Fan, S.

Farr, L.

Ghomari, A.

Gray, D. R.

Grüner-Nielsen, L.

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of oh absorption bands in synthetic silica,” J. Non-Crystal. Solids 203, 19–26 (1996).
[Crossref]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of oh absorption bands in synthetic silica,” J. Non-Crystal. Solids 203, 19–26 (1996).
[Crossref]

Hayes, J. R.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam Fokoua, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, P. Petropoulos, S.-U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 microns in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

E. Numkam Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38(9), 1382–1384 (2013).
[Crossref]

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

Heidt, A. M.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of oh absorption bands in synthetic silica,” J. Non-Crystal. Solids 203, 19–26 (1996).
[Crossref]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of oh absorption bands in synthetic silica,” J. Non-Crystal. Solids 203, 19–26 (1996).
[Crossref]

Jakobsen, D.

Jespersen, K. G.

Kelly, B.

Kim, H. K.

Kino, G. S.

Knight, J. C.

Koch, K. W.

Koshiba, M.

Lecomte, P.

Lelarge, A.

T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Euro. Phys. J. B 56, 121–126 (2006).
[Crossref]

Levenson, J. A.

Li, M.

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

Li, M.-J.

Li, Z.

Lingle, R.

Mangan, B. J.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Mason, M. W.

Melin, G.

Moison, J.-M.

Monro, T. M.

F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers”, in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2006), paper 215945.

Nicholson, J. W.

Numkam Fokoua, E.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

E. Numkam Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

E. Numkam Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38(9), 1382–1384 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam Fokoua, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, P. Petropoulos, S.-U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 microns in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

E. Numkam Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[Crossref]

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

O’Carroll, J.

Pálsdóttir, B.

Parmigiani, F.

Petropoulos, P.

Petrovich, M. N.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

C. Brun, X. Buet, B. Bresson, M. S. Capelle, M. Ciccotti, A. Ghomari, P. Lecomte, J. P. Roger, M. N. Petrovich, F. Poletti, D. J. Richardson, D. Vandembroucq, and G. Tessier, “Picometer-scale surface roughness measurements inside hollow glass fibres,” Opt. Express 22, 29554–29567 (2014).
[Crossref]

E. Numkam Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38(9), 1382–1384 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technologies and applications,” Nano. Photonics 2(5–6), 315–340 (2013).

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam Fokoua, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, P. Petropoulos, S.-U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 microns in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers”, in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2006), paper 215945.

M. N. Petrovich, A. M. Heidt, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “High sensitivity methane and ethane detection using low-loss mid-IR hollow-core photonic bandgap fibers,” in 23rd International Conference on Optical Fiber Sensors (OFS23, 2014), paper OF100-37.

Phan-Huy, M.-C.

Phelan, R.

Poletti, F.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

C. Brun, X. Buet, B. Bresson, M. S. Capelle, M. Ciccotti, A. Ghomari, P. Lecomte, J. P. Roger, M. N. Petrovich, F. Poletti, D. J. Richardson, D. Vandembroucq, and G. Tessier, “Picometer-scale surface roughness measurements inside hollow glass fibres,” Opt. Express 22, 29554–29567 (2014).
[Crossref]

E. Numkam Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

E. Numkam Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38(9), 1382–1384 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technologies and applications,” Nano. Photonics 2(5–6), 315–340 (2013).

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam Fokoua, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, P. Petropoulos, S.-U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 microns in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

E. Numkam Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[Crossref]

F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers”, in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2006), paper 215945.

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

Quiquempois, Y.

Richard, S.

Richardson, D. J.

C. Brun, X. Buet, B. Bresson, M. S. Capelle, M. Ciccotti, A. Ghomari, P. Lecomte, J. P. Roger, M. N. Petrovich, F. Poletti, D. J. Richardson, D. Vandembroucq, and G. Tessier, “Picometer-scale surface roughness measurements inside hollow glass fibres,” Opt. Express 22, 29554–29567 (2014).
[Crossref]

E. Numkam Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam Fokoua, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, P. Petropoulos, S.-U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 microns in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

E. Numkam Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38(9), 1382–1384 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technologies and applications,” Nano. Photonics 2(5–6), 315–340 (2013).

E. Numkam Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[Crossref]

F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers”, in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2006), paper 215945.

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

M. N. Petrovich, A. M. Heidt, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “High sensitivity methane and ethane detection using low-loss mid-IR hollow-core photonic bandgap fibers,” in 23rd International Conference on Optical Fiber Sensors (OFS23, 2014), paper OF100-37.

Roberts, P. J.

Roger, J. P.

Russell, P. S. J.

Russell, P. St. J.

Sabert, H.

Saitoh, K.

Sandoghchi, S. R.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

Sarlat, T.

T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Euro. Phys. J. B 56, 121–126 (2006).
[Crossref]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Shin, J.

Slavík, R.

Søndergård, E.

T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Euro. Phys. J. B 56, 121–126 (2006).
[Crossref]

Sun, Y.

Tessier, G.

Tomlinson, A.

Vandembroucq, D.

West, J. A.

Wheeler, N. V.

N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core photonic-bandgap fiber,” Opt. Lett. 39(2), 295–298 (2014).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam Fokoua, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, P. Petropoulos, S.-U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 microns in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

E. Numkam Fokoua, M. N. Petrovich, N. K. Baddela, N. V. Wheeler, J. R. Hayes, F. Poletti, and D. J. Richardson, “Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication,” Opt. Lett. 38(9), 1382–1384 (2013).
[Crossref]

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

M. N. Petrovich, A. M. Heidt, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “High sensitivity methane and ethane detection using low-loss mid-IR hollow-core photonic bandgap fibers,” in 23rd International Conference on Optical Fiber Sensors (OFS23, 2014), paper OF100-37.

Williams, D. P.

Wooler, J. P.

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Euro. Phys. J. B (1)

T. Sarlat, A. Lelarge, E. Søndergård, and D. Vandembroucq, “Frozen capillary waves on glass surfaces: an AFM study,” Euro. Phys. J. B 56, 121–126 (2006).
[Crossref]

J. Lightwave Technol. (4)

J. Non-Crystal. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of oh absorption bands in synthetic silica,” J. Non-Crystal. Solids 203, 19–26 (1996).
[Crossref]

Nano. Photonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technologies and applications,” Nano. Photonics 2(5–6), 315–340 (2013).

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Opt. Express (9)

C. Brun, X. Buet, B. Bresson, M. S. Capelle, M. Ciccotti, A. Ghomari, P. Lecomte, J. P. Roger, M. N. Petrovich, F. Poletti, D. J. Richardson, D. Vandembroucq, and G. Tessier, “Picometer-scale surface roughness measurements inside hollow glass fibres,” Opt. Express 22, 29554–29567 (2014).
[Crossref]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
[Crossref] [PubMed]

E. Numkam Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14, 7329–7341 (2006).
[Crossref] [PubMed]

K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

E. Numkam Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[Crossref]

H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, “Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers,” Opt. Express 12, 3436–3442 (2004).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam Fokoua, L. Grüner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, P. Petropoulos, S.-U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 microns in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

Opt. Lett. (2)

Other (3)

Y. Chen, N. V. Wheeler, N. K. Baddela, J. R. Hayes, S. R. Sandoghchi, E. Numkam Fokoua, M. Li, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Understanding wavelength scaling in 19-cell core hollow-core photonic bandgap fiber,” in Optical Fiber Communication Conference (OSA Technical Digest Series) (OSA, 2014), paper M2F.4.
[Crossref]

F. Poletti, M. N. Petrovich, R. Amezcua-Correa, N. G. Broderick, T. M. Monro, and D. J. Richardson, “Advances and limitations in the modeling of fabricated photonic bandgap fibers”, in Optical Fiber Communication Conference, OSA Technical Digest Series (OSA, 2006), paper 215945.

M. N. Petrovich, A. M. Heidt, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “High sensitivity methane and ethane detection using low-loss mid-IR hollow-core photonic bandgap fibers,” in 23rd International Conference on Optical Fiber Sensors (OFS23, 2014), paper OF100-37.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Example simulation performed on a high quality SEM image using edge detection. (a) shows the SEM image overlapped with the reconstructed geometry in red. (b) shows the measured short length transmission (over 10m) of the fiber in blue and the simulated fraction of power in the core in red. The many dips are due to the ‘artificial’ surface modes arising from a thicker core surround than in reality.
Fig. 2
Fig. 2 Geometry reconstruction from SEM image: (a) High quality starting SEM image. (b) After conversion to black and white, the holes center positions are detected. A dilation is applied to air holes to leave isolated glass nodes. Knowledge of strut thickness and node area allows to reconstruct the original air hole as detailed in the appendix. (c) Examples showing the overlap between the reconstructed structure in red and the original image.
Fig. 3
Fig. 3 Modelling the loss contributions in fabricated HC-PBGFs. The blue curve is the cutback measurement for the fiber shown in Fig. 1(a). The black one is the total loss with the scattering contribution proportional to the interface field intensity. The red curve has the scattering contribution calculated with the theory of ref. [10]. The dotted green line shows the confinement loss contribution which remains very low at wavelengths within the bandgap.
Fig. 4
Fig. 4 Transmission and loss measurement compared with simulation for a low-loss fiber made with no core tube (a) shows the overlap between the original SEM image and the reconstructed geometry. (b) is the fundamental mode profile at the lowest loss wavelength of 1.5μm. (c) Short length transmission measurement (measured over 10m) and simulated power in the core (d) Cutback loss measurement (from 350 to 10m) and simulated fundamental mode loss. Loss is computed as the sum of contributions from scattering and leakage. Here Loss = 1 2 ( loss ( LP 01 x ) + loss ( LP 01 y ) ) .
Fig. 5
Fig. 5 Effective index map and modal power distribution for the first 5 mode groups of the fiber shown in Fig. 4(a). The surface modes close to the bandgap edge are responsible for the drop in transmission. The number underneath each mode profile indicates the mode’s minimum total attenuation in dB/km acroos the photonic bandgap.
Fig. 6
Fig. 6 (a) Differential modal group delay across the C-band for the first 5 mode groups of the fiber shown in Fig. 4(a). The markers are measured data obtained from time-of flight experiments and were obtained only for one subgroup of each mode group. The solid lines represent the simulated values. (b) Simulated modal loss for each mode within the first five mode groups.
Fig. 7
Fig. 7 Comparison between simulations and experiments for a fiber produced from a pre-form assembled with a core tube. (a) Scanning electron micrograph of the fiber cross-section, (b) shows how struts in the cane relate to those in the fiber and explains why some of the core struts must be thicker. (c) Comparison between short length transmission (10m) and simulated power in the core and (d) between simulated and measured loss via cutback.
Fig. 8
Fig. 8 Fibers operating near 2 and 3μm respectively, with and without core tube. (a) cross section of the fiber guiding at 2μm which was made with a core tube. (b) Corresponding measured transmission over 10m and simulated fraction of power in the core and (c) measured loss by cutback from 1.1km to 10m (blue curve) and simulated total loss (red). (d) Cross-section of the fiber guiding around 3.3μm, (e) corresponding transmission over 5m length (blue) and simulated power in the core (red). (d) Cutback loss measurement from 58 to 5m before purging the fiber of absorbing gas species (blue), measured loss after gas purging (green) and simulated loss in the absence (magenta) and presence (red) of material absorption.
Fig. 9
Fig. 9 Reconstruction of the air-hole boundary with information on node positions, strut thicknesses and node areas.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S ( κ ) = k B T g 4 π γ κ
S ( κ ) = k B T g 4 π γ κ 2 + κ c 2
α sc [ dB / km ] = η × F
F = ( ε 0 μ 0 ) 1 2 holes perimeter | E | 2 d l croos section E × H * d A
α sc [ dB / km ] = η ( 1.55 μ m ) ( 1.55 λ c [ μ m ] ) 2 F
A A u = AH A A v = AI
A K = AL t 2 2 cos ( α π / 2 ) A L = KA = t 1 2 cos ( α π / 2 ) IK = t 2 2 tan ( α π / 2 ) HL = t 1 2 tan ( α π / 2 )
A A u = t 2 2 cos ( α π / 2 ) t 1 2 tan ( α π / 2 ) A A v = t 1 2 cos ( α π / 2 ) t 2 2 tan ( α π / 2 )
A t = A u [ area of hexagon ( A B C ) area of hexagon ( A B C ) ]
1 6 A t = r 2 tan ( ( π α ) / 2 ) 1 2 π α 2 r 2 .

Metrics