Abstract

Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance evaluation of multi-stratum resources optimization with network functions virtualization for cloud-based radio over optical fiber networks

Hui Yang, Yongqi He, Jie Zhang, Yuefeng Ji, Wei Bai, and Young Lee
Opt. Express 24(8) 8666-8678 (2016)

Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect

Hui Yang, Jie Zhang, Yongli Zhao, Yuefeng Ji, Jialin Wu, Yi Lin, Jianrui Han, and Young Lee
Opt. Express 23(10) 13384-13398 (2015)

Experimental demonstration of elastic optical networks based on enhanced software defined networking (eSDN) for data center application

Jie Zhang, Hui Yang, Yongli Zhao, Yuefeng Ji, Hui Li, Yi Lin, Gang Li, Jianrui Han, Young Lee, and Teng Ma
Opt. Express 21(22) 26990-27002 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
    [Crossref]
  2. C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
    [Crossref]
  3. P. Zhu, J. Li, P. Zhou, B. Lin, Z. Chen, and Y. He, “Upstream WDM-PON transmission scheme based on PDM-OOK modulation and digital coherent detection with dual-modulus algorithm,” Opt. Express 23(10), 12750–12757 (2015).
    [Crossref] [PubMed]
  4. J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network (C-RAN): a primer,” IEEE Netw. 29(1), 35–41 (2015).
    [Crossref]
  5. T. Szyrkowiec, A. Autenrieth, P. Gunning, P. Wright, A. Lord, J. P. Elbers, and A. Lumb, “First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration,” Opt. Express 22(3), 2595–2602 (2014).
    [Crossref] [PubMed]
  6. H. Yang, Y. Zhao, J. Zhang, Y. Tan, Y. Ji, J. Han, Y. Lin, and Y. Lee, “Data center service localization based on virtual resource migration in software defined elastic optical network,” in Proceedings of Optical Fiber Communication Conference (OFC 2015), (OSA, 2015), paper Th4G.4.
    [Crossref]
  7. I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
    [Crossref]
  8. H. Yang, J. Zhang, Y. Zhao, Y. Ji, J. Wu, Y. Lin, J. Han, and Y. Lee, “Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect,” Opt. Express 23(10), 13384–13398 (2015).
    [Crossref] [PubMed]
  9. M. Aazam and E. Huh, “Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT,” in Proceedings of IEEE International Conference on Advanced Information Networking and Applications (AINA 2015), pp. 687 – 694.
    [Crossref]
  10. A. A. Alsaffar and E. Huh, “Multimedia delivery mechanism framework for smart devices based on mega data center and micro data center in PMIPv6 environment,” in Proceedings of International Conference on Information Networking (ICOIN 2015), pp. 367 – 368.
    [Crossref]
  11. 11H. Yang, J. Zhang, Y. Zhao, Y. Ji, J. Han, Y. Lin, and Y. Lee, “CSO: Cross Stratum Optimization for Optical as a Service,” IEEE Commun. Mag.  53(8), 130-139 (2015).
  12. L. Liu, W. R. Peng, R. Casellas, T. Tsuritani, I. Morita, R. Martínez, R. Muñoz, and S. J. B. Yoo, “Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission,” Opt. Express 22(1), 30–40 (2014).
    [Crossref] [PubMed]
  13. M. Channegowda, R. Nejabati, M. Rashidi Fard, S. Peng, N. Amaya, G. Zervas, D. Simeonidou, R. Vilalta, R. Casellas, R. Martínez, R. Muñoz, L. Liu, T. Tsuritani, I. Morita, A. Autenrieth, J. P. Elbers, P. Kostecki, and P. Kaczmarek, “Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed,” Opt. Express 21(5), 5487–5498 (2013).
    [Crossref] [PubMed]
  14. F. Paolucci, F. Cugini, N. Hussain, F. Fresi, and L. Poti, “OpenFlow-based flexible optical networks with enhanced monitoring functionalities,” in Proceedings of European Conference and Exhibition on Optical Communications (ECOC 2012), (OSA, 2012), paper Tu.1.D.5.
    [Crossref]
  15. L. Liu, R. Muñoz, R. Casellas, T. Tsuritani, R. Martínez, and I. Morita, “OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic optical path networks,” in Proceedings of European Conference on Optical Communication (ECOC 2012), (OSA, 2012), paper Mo.2.D.3.
    [Crossref]
  16. R. Martínez, R. Casellas, R. Vilalta, and R. Muñoz, “Experimental assessment of GMPLS/PCE-controlled multi-flow optical transponders in flexgrid networks,” in Proceedings of Optical Fiber Communication Conference (OFC, 2015), (OSA, 2015), paper Tu2B.4.
    [Crossref]
  17. H. Yang, J. Zhang, Y. Zhao, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, and T. Ma, “Performance evaluation of time-aware enhanced software defined networking (TeSDN) for elastic data center optical interconnection,” Opt. Express 22(15), 17630–17643 (2014).
    [Crossref] [PubMed]
  18. Global Transport SDN Demonstration White Paper, ONF and OIF (2014), http://www.oiforum.com/public/ Form_Global_Transport_SDN_Demo_WP.html .
  19. E. Haleplidis, ed., “Software-Defined Networking (SDN): Layers and Architecture Terminology,” IETF RFC 7426 (2015), https://tools.ietf.org/html/rfc7426 .

2015 (4)

2014 (4)

2013 (1)

2012 (1)

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

2008 (1)

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
[Crossref]

Al-Fares, M.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
[Crossref]

Amaya, N.

Autenrieth, A.

Azodolmolky, S.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Careglio, D.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Casellas, R.

Channegowda, M.

Chen, Z.

Elbers, J. P.

Gunning, P.

Han, J.

He, Y.

Hong, Y.

J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network (C-RAN): a primer,” IEEE Netw. 29(1), 35–41 (2015).
[Crossref]

Ji, Y.

Kachris, C.

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

Kaczmarek, P.

Kostecki, P.

Lee, Y.

Li, G.

Li, H.

Li, J.

Lin, B.

Lin, Y.

Liu, L.

Lord, A.

Loukissas, A.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
[Crossref]

Lumb, A.

Ma, T.

Martínez, R.

Morita, I.

Muñoz, R.

Nejabati, R.

Palkopoulou, E.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Peng, S.

Peng, W. R.

Rashidi Fard, M.

Simeonidou, D.

Sole-Pareta, J.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Szyrkowiec, T.

Tomkos, I.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

Tsuritani, T.

Vahdat, A.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
[Crossref]

Vilalta, R.

Wen, Y.

J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network (C-RAN): a primer,” IEEE Netw. 29(1), 35–41 (2015).
[Crossref]

Wright, P.

Wu, J.

Yang, H.

Yoo, S. J. B.

Zervas, G.

Zhang, J.

Zhang, Z.

J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network (C-RAN): a primer,” IEEE Netw. 29(1), 35–41 (2015).
[Crossref]

Zhao, Y.

Zhou, P.

Zhu, P.

Comput. Commun. Rev. (1)

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” Comput. Commun. Rev. 38(4), 63–74 (2008).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Comm. Surv. and Tutor. 14(4), 1021–1036 (2012).
[Crossref]

IEEE Commun. Mag. (1)

11H. Yang, J. Zhang, Y. Zhao, Y. Ji, J. Han, Y. Lin, and Y. Lee, “CSO: Cross Stratum Optimization for Optical as a Service,” IEEE Commun. Mag.  53(8), 130-139 (2015).

IEEE Netw. (1)

J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network (C-RAN): a primer,” IEEE Netw. 29(1), 35–41 (2015).
[Crossref]

Opt. Express (6)

T. Szyrkowiec, A. Autenrieth, P. Gunning, P. Wright, A. Lord, J. P. Elbers, and A. Lumb, “First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration,” Opt. Express 22(3), 2595–2602 (2014).
[Crossref] [PubMed]

P. Zhu, J. Li, P. Zhou, B. Lin, Z. Chen, and Y. He, “Upstream WDM-PON transmission scheme based on PDM-OOK modulation and digital coherent detection with dual-modulus algorithm,” Opt. Express 23(10), 12750–12757 (2015).
[Crossref] [PubMed]

L. Liu, W. R. Peng, R. Casellas, T. Tsuritani, I. Morita, R. Martínez, R. Muñoz, and S. J. B. Yoo, “Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission,” Opt. Express 22(1), 30–40 (2014).
[Crossref] [PubMed]

M. Channegowda, R. Nejabati, M. Rashidi Fard, S. Peng, N. Amaya, G. Zervas, D. Simeonidou, R. Vilalta, R. Casellas, R. Martínez, R. Muñoz, L. Liu, T. Tsuritani, I. Morita, A. Autenrieth, J. P. Elbers, P. Kostecki, and P. Kaczmarek, “Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed,” Opt. Express 21(5), 5487–5498 (2013).
[Crossref] [PubMed]

H. Yang, J. Zhang, Y. Zhao, Y. Ji, J. Wu, Y. Lin, J. Han, and Y. Lee, “Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect,” Opt. Express 23(10), 13384–13398 (2015).
[Crossref] [PubMed]

H. Yang, J. Zhang, Y. Zhao, Y. Ji, H. Li, Y. Lin, G. Li, J. Han, Y. Lee, and T. Ma, “Performance evaluation of time-aware enhanced software defined networking (TeSDN) for elastic data center optical interconnection,” Opt. Express 22(15), 17630–17643 (2014).
[Crossref] [PubMed]

Proc. IEEE (1)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Other (8)

Global Transport SDN Demonstration White Paper, ONF and OIF (2014), http://www.oiforum.com/public/ Form_Global_Transport_SDN_Demo_WP.html .

E. Haleplidis, ed., “Software-Defined Networking (SDN): Layers and Architecture Terminology,” IETF RFC 7426 (2015), https://tools.ietf.org/html/rfc7426 .

M. Aazam and E. Huh, “Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT,” in Proceedings of IEEE International Conference on Advanced Information Networking and Applications (AINA 2015), pp. 687 – 694.
[Crossref]

A. A. Alsaffar and E. Huh, “Multimedia delivery mechanism framework for smart devices based on mega data center and micro data center in PMIPv6 environment,” in Proceedings of International Conference on Information Networking (ICOIN 2015), pp. 367 – 368.
[Crossref]

F. Paolucci, F. Cugini, N. Hussain, F. Fresi, and L. Poti, “OpenFlow-based flexible optical networks with enhanced monitoring functionalities,” in Proceedings of European Conference and Exhibition on Optical Communications (ECOC 2012), (OSA, 2012), paper Tu.1.D.5.
[Crossref]

L. Liu, R. Muñoz, R. Casellas, T. Tsuritani, R. Martínez, and I. Morita, “OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic optical path networks,” in Proceedings of European Conference on Optical Communication (ECOC 2012), (OSA, 2012), paper Mo.2.D.3.
[Crossref]

R. Martínez, R. Casellas, R. Vilalta, and R. Muñoz, “Experimental assessment of GMPLS/PCE-controlled multi-flow optical transponders in flexgrid networks,” in Proceedings of Optical Fiber Communication Conference (OFC, 2015), (OSA, 2015), paper Tu2B.4.
[Crossref]

H. Yang, Y. Zhao, J. Zhang, Y. Tan, Y. Ji, J. Han, Y. Lin, and Y. Lee, “Data center service localization based on virtual resource migration in software defined elastic optical network,” in Proceedings of Optical Fiber Communication Conference (OFC 2015), (OSA, 2015), paper Th4G.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The architecture of DCSL based on virtual resource migration for software defined elastic data center optical network.
Fig. 2
Fig. 2 The functional models of network and application controllers.
Fig. 3
Fig. 3 Experimental testbed for DCSL and demonstrator setup.
Fig. 4
Fig. 4 Wireshark capture of the message sequence for DCSL in (a) NC and (b) AC.
Fig. 5
Fig. 5 Comparison on (a) path blocking probability, (b) resource occupation rate and (c) path provisioning latency among various schemes in heavy traffic load scenario.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f a c [ U C ( t ) , U R ( t ) , k C , k R ] = ( k C × U C ( t ) + k R × U R ( t ) ) / ( k C + k R )
f b c [ B l , D l , H p , k B , k D ] = k B l = 1 H p B l / H p B + k D l = 1 H p D l
f a i f ¯ a 2 = max a { f a f ¯ a 2 } , f a j f ¯ a 2 = min a { f a f ¯ a 2 }
β = cov ( f a i , f a j ) D ( f a i ) D ( f a j ) = E ( f a i f a j ) E ( f a i ) E ( f a j ) E ( f a i 2 ) [ E ( f a i ) ] 2 E ( f a j 2 ) [ E ( f a j ) ] 2
α = ( 1 β ) f a c max { f a 1 , f a 2 f a k } + β f b c max { f b 1 , f b 2 f b k }

Metrics