Abstract

Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stabilized master laser system for differential absorption lidar

Alex Dinovitser, Murray W. Hamilton, and Robert A. Vincent
Appl. Opt. 49(17) 3274-3281 (2010)

Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements

Grady J. Koch, Jeffrey Y. Beyon, Fabien Gibert, Bruce W. Barnes, Syed Ismail, Mulugeta Petros, Paul J. Petzar, Jirong Yu, Edward A. Modlin, Kenneth J. Davis, and Upendra N. Singh
Appl. Opt. 47(7) 944-956 (2008)

Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

Noah S. Higdon, Edward V. Browell, Patrick Ponsardin, Benoist E. Grossmann, Carolyn F. Butler, Thomas H. Chyba, M. Neale Mayo, Robert J. Allen, Alene W. Heuser, William B. Grant, Syed Ismail, Shane D. Mayor, and Arlen F. Carter
Appl. Opt. 33(27) 6422-6438 (1994)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 2015589–15609 (2012).
    [Crossref] [PubMed]
  2. M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
    [Crossref]
  3. T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6 μm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 2530415–30432 (2013).
    [Crossref]
  4. R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” Proc. Fourth Symposium on Remote Sensing of the Environment, Ann Arbor, Michigan, 12–24 April, Environmental Research Institute of Michigan, 273–283 (1966).
  5. V. Wulfmeyer and J. Boesenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
    [Crossref]
  6. A. Sennaroglu, Solid-State Lasers and Applications (CRC press, 2006), Chap. 12
    [Crossref]
  7. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
    [Crossref]
  8. P. L. Ponsardin and E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815 nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
    [Crossref]
  9. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47944–956 (2008).
    [Crossref] [PubMed]
  10. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.
  11. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
    [Crossref]
  12. E. Grard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the water vapor lidar experiment in space (WALES),” Bull. Am. Meteorol. Soc. 85, 237–251 (2004).
    [Crossref]
  13. G. Wagner, A. Behrendt, V. Wulfmeyer, F. Späth, and M. Schiller, “High-power Ti:sapphire laser at 820 nm for scanning ground-based water vapor differential absorption lidar,” Appl. Opt. 522454–24692013.
    [Crossref] [PubMed]
  14. European Space Agency J. Callies, R. C. M. Learner, R. Schermaul, N. F. Zobov, D. A. Newnham, J. Ballard, and J. Tennyson, “Measurement of H2O absorption cross-sections,” [Internet]. NCAS British Atmospheric Data Centre, 2000–2014.
  15. E. E. Whiting, “An empirical approximation to the Voigt profile,” Journal of Quantitative Spectroscopy and Radiative Transfer 8, 1379–1384 (1968).
    [Crossref]
  16. J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf. 17, 233–236 (1977).
    [Crossref]
  17. J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121 (2004).
    [Crossref] [PubMed]
  18. A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Micropulse water vapor differential absorption lidar: Transmitter design and performance,” Opt. Express 22, 25137–25151 (2012).
    [Crossref]
  19. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50, 1047–1056 (2011).
    [Crossref] [PubMed]
  20. M. Hamilton, R. Atkinson, A. Dinovitser, E. Peters, and R. A. Vincent, “Towards low-cost water-vapour differential absorption lidar,” Proc. SPIE 7153, 71530C (2008).
  21. H. R. Khalesifard, A. Fix, G. Ehret, M. Schiller, and V. Wulfmeyer, “Fast-switching system for injection seeding of a high-power Ti:sapphire laser,” Rev. Sci. Instrum. 80, 073110 (2009).
    [Crossref] [PubMed]
  22. F. Spath, S. Metzendorf, A. Behrendt, H.-D. Wizemann, G. Wagner, and V. Wulfmeyer, “Online/off-line injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL,” Opt. Commun. 309, 37–43 (2013).
    [Crossref]
  23. A. Dinovitser, M. Hamilton, and R. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010).
    [Crossref] [PubMed]
  24. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–891 (1965).
    [Crossref]
  25. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31718–731 (1992).
    [Crossref] [PubMed]
  26. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl Phys B. 31 (2) 97–105 (1983).
    [Crossref]
  27. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 336294–6302 (1994).
    [Crossref] [PubMed]
  28. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 6707–717 (1992)
    [Crossref]
  29. A. Dinovitser, A Stabilized Master Laser System for Differential Absorption LIDAR, University of Adelaide, Australia, PhD Thesis (2012).
  30. P. Zhimin, D. Yanjun, C. Lu, and Y. Qiansuo, “Odd harmonics with wavelength modulation spectroscopy for recovering gas absorbance shape,” Opt. Express 2011976–11985 (2012)
    [Crossref] [PubMed]
  31. L. G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B. 6871–876 (1989).
    [Crossref]
  32. A. L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, and K. Duffin, “Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line,” Opt. Express 179602–9607 (2009).
    [Crossref] [PubMed]
  33. V. Pevtschin and S. Ezekiel, “Investigation of absolute stability of water-vapor-stabilized semiconductor laser,” Opt. Lett. 3, 172–174 (1987).
    [Crossref]
  34. S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation,” Appl. Opt. 33, 6728–6738 (2003).
    [Crossref]
  35. W. J. Schwenger and J. M. Higbie, ”High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012).
    [Crossref] [PubMed]
  36. R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl Phys B. 85, 477–485 (2006).
    [Crossref]
  37. S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thevenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
    [Crossref] [PubMed]
  38. L. Greenspan, “Humidity fixed points of binary saturated aqueous solutions,” Journal of Research of the National Bureau of Standards. A, Physics and Chemistry 81A, 89–96 (1977).
    [Crossref]
  39. OIML, “The scale of relative humidity of air certified against saturated salt solutions,” Organisation Internationale de Métrologie Légale. OIML R 121, 1 (1996).
  40. A. Wexler, “Vapor pressure formulation for water in range 0 to 100°C. A revision,” J. Res. Natl. Bur. Stand. 80A, 775–785 (1977).
    [Crossref]
  41. A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” Journal of Applied Meteorology 20, 1527–1532 (1981).
    [Crossref]
  42. WMO, “Guide to meteorological instruments and methods of observation,” World Meteorological Organization8, 14–25 (2008).
  43. V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304–5320 (2001).
    [Crossref]
  44. M. A. Krainak, A. W. Yu, G. Yang, S. X. Li, and X. Sun, “Photon-counting detectors for space-based laser receivers,” Proc. SPIE Quantum Sensing and Nanophotonic Devices VII,  7608760827 (2010).
    [Crossref]

2013 (3)

T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6 μm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 2530415–30432 (2013).
[Crossref]

G. Wagner, A. Behrendt, V. Wulfmeyer, F. Späth, and M. Schiller, “High-power Ti:sapphire laser at 820 nm for scanning ground-based water vapor differential absorption lidar,” Appl. Opt. 522454–24692013.
[Crossref] [PubMed]

F. Spath, S. Metzendorf, A. Behrendt, H.-D. Wizemann, G. Wagner, and V. Wulfmeyer, “Online/off-line injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL,” Opt. Commun. 309, 37–43 (2013).
[Crossref]

2012 (5)

P. Zhimin, D. Yanjun, C. Lu, and Y. Qiansuo, “Odd harmonics with wavelength modulation spectroscopy for recovering gas absorbance shape,” Opt. Express 2011976–11985 (2012)
[Crossref] [PubMed]

W. J. Schwenger and J. M. Higbie, ”High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012).
[Crossref] [PubMed]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Micropulse water vapor differential absorption lidar: Transmitter design and performance,” Opt. Express 22, 25137–25151 (2012).
[Crossref]

J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 2015589–15609 (2012).
[Crossref] [PubMed]

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

2011 (1)

2010 (2)

A. Dinovitser, M. Hamilton, and R. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010).
[Crossref] [PubMed]

M. A. Krainak, A. W. Yu, G. Yang, S. X. Li, and X. Sun, “Photon-counting detectors for space-based laser receivers,” Proc. SPIE Quantum Sensing and Nanophotonic Devices VII,  7608760827 (2010).
[Crossref]

2009 (3)

A. L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, and K. Duffin, “Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line,” Opt. Express 179602–9607 (2009).
[Crossref] [PubMed]

H. R. Khalesifard, A. Fix, G. Ehret, M. Schiller, and V. Wulfmeyer, “Fast-switching system for injection seeding of a high-power Ti:sapphire laser,” Rev. Sci. Instrum. 80, 073110 (2009).
[Crossref] [PubMed]

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

2008 (3)

2006 (1)

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl Phys B. 85, 477–485 (2006).
[Crossref]

2004 (2)

J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121 (2004).
[Crossref] [PubMed]

E. Grard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the water vapor lidar experiment in space (WALES),” Bull. Am. Meteorol. Soc. 85, 237–251 (2004).
[Crossref]

2003 (1)

S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation,” Appl. Opt. 33, 6728–6738 (2003).
[Crossref]

2001 (1)

1998 (2)

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[Crossref]

V. Wulfmeyer and J. Boesenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[Crossref]

1997 (1)

P. L. Ponsardin and E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815 nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[Crossref]

1994 (1)

1992 (2)

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 6707–717 (1992)
[Crossref]

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31718–731 (1992).
[Crossref] [PubMed]

1989 (1)

L. G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B. 6871–876 (1989).
[Crossref]

1987 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl Phys B. 31 (2) 97–105 (1983).
[Crossref]

1981 (1)

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” Journal of Applied Meteorology 20, 1527–1532 (1981).
[Crossref]

1977 (3)

L. Greenspan, “Humidity fixed points of binary saturated aqueous solutions,” Journal of Research of the National Bureau of Standards. A, Physics and Chemistry 81A, 89–96 (1977).
[Crossref]

A. Wexler, “Vapor pressure formulation for water in range 0 to 100°C. A revision,” J. Res. Natl. Bur. Stand. 80A, 775–785 (1977).
[Crossref]

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf. 17, 233–236 (1977).
[Crossref]

1968 (1)

E. E. Whiting, “An empirical approximation to the Voigt profile,” Journal of Quantitative Spectroscopy and Radiative Transfer 8, 1379–1384 (1968).
[Crossref]

1965 (1)

Abshire, J. B.

Affolderbach, C.

S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thevenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
[Crossref] [PubMed]

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl Phys B. 85, 477–485 (2006).
[Crossref]

Antill, C. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Atkinson, R.

M. Hamilton, R. Atkinson, A. Dinovitser, E. Peters, and R. A. Vincent, “Towards low-cost water-vapour differential absorption lidar,” Proc. SPIE 7153, 71530C (2008).

Auwera, J. V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Ayers, T.

Ballard, J.

European Space Agency J. Callies, R. C. M. Learner, R. Schermaul, N. F. Zobov, D. A. Newnham, J. Ballard, and J. Tennyson, “Measurement of H2O absorption cross-sections,” [Internet]. NCAS British Atmospheric Data Centre, 2000–2014.

Barbe, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Barnes, B. W.

Barnes, J. C.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Behrendt, A.

F. Spath, S. Metzendorf, A. Behrendt, H.-D. Wizemann, G. Wagner, and V. Wulfmeyer, “Online/off-line injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL,” Opt. Commun. 309, 37–43 (2013).
[Crossref]

G. Wagner, A. Behrendt, V. Wulfmeyer, F. Späth, and M. Schiller, “High-power Ti:sapphire laser at 820 nm for scanning ground-based water vapor differential absorption lidar,” Appl. Opt. 522454–24692013.
[Crossref] [PubMed]

Benner, D. C.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Beyon, J. Y.

Birk, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Boesenberg, J.

Bomse, D. S.

Boudon, V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Bravo, H. E.

Browell, E. V.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[Crossref]

P. L. Ponsardin and E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815 nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[Crossref]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Brown, K. E.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Brown, L. R.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Buck, A. L.

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” Journal of Applied Meteorology 20, 1527–1532 (1981).
[Crossref]

Callies, J.

European Space Agency J. Callies, R. C. M. Learner, R. Schermaul, N. F. Zobov, D. A. Newnham, J. Ballard, and J. Tennyson, “Measurement of H2O absorption cross-sections,” [Internet]. NCAS British Atmospheric Data Centre, 2000–2014.

Camp, J.

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

Campargue, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Carlsten, J. L.

Chakraborty, A. L.

Champion, J. P.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Chance, K. V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Chen, J. R.

Coudert, L. H.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Coyle, B.

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

Crawford, J. H.

T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6 μm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 2530415–30432 (2013).
[Crossref]

Dana, V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Davis, K. J.

Devi, V. M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Di Girolamo, P.

E. Grard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the water vapor lidar experiment in space (WALES),” Bull. Am. Meteorol. Soc. 85, 237–251 (2004).
[Crossref]

Dinovitser, A.

A. Dinovitser, M. Hamilton, and R. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010).
[Crossref] [PubMed]

M. Hamilton, R. Atkinson, A. Dinovitser, E. Peters, and R. A. Vincent, “Towards low-cost water-vapour differential absorption lidar,” Proc. SPIE 7153, 71530C (2008).

A. Dinovitser, A Stabilized Master Laser System for Differential Absorption LIDAR, University of Adelaide, Australia, PhD Thesis (2012).

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl Phys B. 31 (2) 97–105 (1983).
[Crossref]

Duffin, K.

Edwards, W. C.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Ehret, G.

H. R. Khalesifard, A. Fix, G. Ehret, M. Schiller, and V. Wulfmeyer, “Fast-switching system for injection seeding of a high-power Ti:sapphire laser,” Rev. Sci. Instrum. 80, 073110 (2009).
[Crossref] [PubMed]

E. Grard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the water vapor lidar experiment in space (WALES),” Bull. Am. Meteorol. Soc. 85, 237–251 (2004).
[Crossref]

Ezekiel, S.

Fally, S.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Fix, A.

H. R. Khalesifard, A. Fix, G. Ehret, M. Schiller, and V. Wulfmeyer, “Fast-switching system for injection seeding of a high-power Ti:sapphire laser,” Rev. Sci. Instrum. 80, 073110 (2009).
[Crossref] [PubMed]

Flaud, J. M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl Phys B. 31 (2) 97–105 (1983).
[Crossref]

Gallagher, T. F.

L. G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B. 6871–876 (1989).
[Crossref]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Garand, L.

E. Grard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the water vapor lidar experiment in space (WALES),” Bull. Am. Meteorol. Soc. 85, 237–251 (2004).
[Crossref]

Gibert, F.

Goldman, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Grant, W. B.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[Crossref]

Grard, E.

E. Grard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the water vapor lidar experiment in space (WALES),” Bull. Am. Meteorol. Soc. 85, 237–251 (2004).
[Crossref]

Greenspan, L.

L. Greenspan, “Humidity fixed points of binary saturated aqueous solutions,” Journal of Research of the National Bureau of Standards. A, Physics and Chemistry 81A, 89–96 (1977).
[Crossref]

Hair, J. W.

T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6 μm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 2530415–30432 (2013).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl Phys B. 31 (2) 97–105 (1983).
[Crossref]

Hall, W. M.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Hamilton, M.

A. Dinovitser, M. Hamilton, and R. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010).
[Crossref] [PubMed]

M. Hamilton, R. Atkinson, A. Dinovitser, E. Peters, and R. A. Vincent, “Towards low-cost water-vapour differential absorption lidar,” Proc. SPIE 7153, 71530C (2008).

Hardesty, R. M.

Herriott, D. R.

Higbie, J. M.

W. J. Schwenger and J. M. Higbie, ”High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012).
[Crossref] [PubMed]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl Phys B. 31 (2) 97–105 (1983).
[Crossref]

Ismail, S.

T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6 μm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 2530415–30432 (2013).
[Crossref]

G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47944–956 (2008).
[Crossref] [PubMed]

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[Crossref]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Jacquemart, D.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Johnstone, W.

Jones, W. J. Irby

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Kauffmann-Werner, D.

Khalesifard, H. R.

H. R. Khalesifard, A. Fix, G. Ehret, M. Schiller, and V. Wulfmeyer, “Fast-switching system for injection seeding of a high-power Ti:sapphire laser,” Rev. Sci. Instrum. 80, 073110 (2009).
[Crossref] [PubMed]

Kleiner, I.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Koch, G. J.

Koenig, K. W.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl Phys B. 31 (2) 97–105 (1983).
[Crossref]

Krainak, M. A.

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50, 1047–1056 (2011).
[Crossref] [PubMed]

M. A. Krainak, A. W. Yu, G. Yang, S. X. Li, and X. Sun, “Photon-counting detectors for space-based laser receivers,” Proc. SPIE Quantum Sensing and Nanophotonic Devices VII,  7608760827 (2010).
[Crossref]

J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121 (2004).
[Crossref] [PubMed]

Lacome, N.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Lafferty, W. J.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Learner, R. C. M.

European Space Agency J. Callies, R. C. M. Learner, R. Schermaul, N. F. Zobov, D. A. Newnham, J. Ballard, and J. Tennyson, “Measurement of H2O absorption cross-sections,” [Internet]. NCAS British Atmospheric Data Centre, 2000–2014.

Leifer, I.

T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6 μm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 2530415–30432 (2013).
[Crossref]

Lengden, M.

Lenth, W.

Li, S. X.

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

M. A. Krainak, A. W. Yu, G. Yang, S. X. Li, and X. Sun, “Photon-counting detectors for space-based laser receivers,” Proc. SPIE Quantum Sensing and Nanophotonic Devices VII,  7608760827 (2010).
[Crossref]

Little, A. D.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Longbothum, R. L.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf. 17, 233–236 (1977).
[Crossref]

Lu, C.

Luck, W. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Machol, J. L.

Mandin, J. Y.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Massie, S. T.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Matthey, R.

S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thevenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
[Crossref] [PubMed]

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl Phys B. 85, 477–485 (2006).
[Crossref]

Metzendorf, S.

F. Spath, S. Metzendorf, A. Behrendt, H.-D. Wizemann, G. Wagner, and V. Wulfmeyer, “Online/off-line injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL,” Opt. Commun. 309, 37–43 (2013).
[Crossref]

Mikhailenko, S. N.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Mileti, G.

S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thevenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
[Crossref] [PubMed]

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl Phys B. 85, 477–485 (2006).
[Crossref]

Miller, C. E.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Moazzen-Ahmadi, N.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Modlin, E. A.

Moore, A. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl Phys B. 31 (2) 97–105 (1983).
[Crossref]

Naumenko, O. V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Nehrir, A. R.

T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6 μm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 2530415–30432 (2013).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Micropulse water vapor differential absorption lidar: Transmitter design and performance,” Opt. Express 22, 25137–25151 (2012).
[Crossref]

Newnham, D. A.

European Space Agency J. Callies, R. C. M. Learner, R. Schermaul, N. F. Zobov, D. A. Newnham, J. Ballard, and J. Tennyson, “Measurement of H2O absorption cross-sections,” [Internet]. NCAS British Atmospheric Data Centre, 2000–2014.

Nikitin, A. V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Numata, K.

Olivero, J. J.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf. 17, 233–236 (1977).
[Crossref]

Orphal, J.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Perevalov, V. I.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Perrin, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Peters, E.

M. Hamilton, R. Atkinson, A. Dinovitser, E. Peters, and R. A. Vincent, “Towards low-cost water-vapour differential absorption lidar,” Proc. SPIE 7153, 71530C (2008).

Petros, M.

Petway, L. B.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

Petzar, P. J.

Pevtschin, V.

Ponsardin, P. L.

P. L. Ponsardin and E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815 nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[Crossref]

Predoi-Cross, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Qiansuo, Y.

Refaat, T. F.

T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6 μm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 2530415–30432 (2013).
[Crossref]

Repasky, K. S.

Rinsland, C. P.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Riris, H.

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

L. G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B. 6871–876 (1989).
[Crossref]

Robert, P.

S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation,” Appl. Opt. 33, 6728–6738 (2003).
[Crossref]

Rotger, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Ruxton, K.

Sandberg, S. P.

Schermaul, R.

European Space Agency J. Callies, R. C. M. Learner, R. Schermaul, N. F. Zobov, D. A. Newnham, J. Ballard, and J. Tennyson, “Measurement of H2O absorption cross-sections,” [Internet]. NCAS British Atmospheric Data Centre, 2000–2014.

Schiller, M.

G. Wagner, A. Behrendt, V. Wulfmeyer, F. Späth, and M. Schiller, “High-power Ti:sapphire laser at 820 nm for scanning ground-based water vapor differential absorption lidar,” Appl. Opt. 522454–24692013.
[Crossref] [PubMed]

H. R. Khalesifard, A. Fix, G. Ehret, M. Schiller, and V. Wulfmeyer, “Fast-switching system for injection seeding of a high-power Ti:sapphire laser,” Rev. Sci. Instrum. 80, 073110 (2009).
[Crossref] [PubMed]

Schilt, S.

S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thevenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
[Crossref] [PubMed]

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl Phys B. 85, 477–485 (2006).
[Crossref]

S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation,” Appl. Opt. 33, 6728–6738 (2003).
[Crossref]

Schotland, R. M.

R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” Proc. Fourth Symposium on Remote Sensing of the Environment, Ann Arbor, Michigan, 12–24 April, Environmental Research Institute of Michigan, 273–283 (1966).

Schulte, H. J.

Schwenger, W. J.

W. J. Schwenger and J. M. Higbie, ”High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012).
[Crossref] [PubMed]

Schwenz, K. T.

Senff, C. J.

Sennaroglu, A.

A. Sennaroglu, Solid-State Lasers and Applications (CRC press, 2006), Chap. 12
[Crossref]

Shuman, T.

T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6 μm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 2530415–30432 (2013).
[Crossref]

Silver, J. A.

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 6707–717 (1992)
[Crossref]

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31718–731 (1992).
[Crossref] [PubMed]

Simeckova, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Singh, U. N.

Smith, M. A. H.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Spath, F.

F. Spath, S. Metzendorf, A. Behrendt, H.-D. Wizemann, G. Wagner, and V. Wulfmeyer, “Online/off-line injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL,” Opt. Commun. 309, 37–43 (2013).
[Crossref]

Späth, F.

Stanton, A. C.

Stephen, M. A.

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

Stysley, P.

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

Sun, X.

M. A. Krainak, A. W. Yu, G. Yang, S. X. Li, and X. Sun, “Photon-counting detectors for space-based laser receivers,” Proc. SPIE Quantum Sensing and Nanophotonic Devices VII,  7608760827 (2010).
[Crossref]

Sung, K.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Supplee, J. M.

Tan, D. G. H.

E. Grard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the water vapor lidar experiment in space (WALES),” Bull. Am. Meteorol. Soc. 85, 237–251 (2004).
[Crossref]

Tashkun, S. A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Tate, D. A.

L. G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B. 6871–876 (1989).
[Crossref]

Tennyson, J.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

European Space Agency J. Callies, R. C. M. Learner, R. Schermaul, N. F. Zobov, D. A. Newnham, J. Ballard, and J. Tennyson, “Measurement of H2O absorption cross-sections,” [Internet]. NCAS British Atmospheric Data Centre, 2000–2014.

Thevenaz, L.

S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thevenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
[Crossref] [PubMed]

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl Phys B. 85, 477–485 (2006).
[Crossref]

S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation,” Appl. Opt. 33, 6728–6738 (2003).
[Crossref]

Toth, R. A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Vandaele, A. C.

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

Vincent, R.

Vincent, R. A.

M. Hamilton, R. Atkinson, A. Dinovitser, E. Peters, and R. A. Vincent, “Towards low-cost water-vapour differential absorption lidar,” Proc. SPIE 7153, 71530C (2008).

Wagner, G.

F. Spath, S. Metzendorf, A. Behrendt, H.-D. Wizemann, G. Wagner, and V. Wulfmeyer, “Online/off-line injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL,” Opt. Commun. 309, 37–43 (2013).
[Crossref]

G. Wagner, A. Behrendt, V. Wulfmeyer, F. Späth, and M. Schiller, “High-power Ti:sapphire laser at 820 nm for scanning ground-based water vapor differential absorption lidar,” Appl. Opt. 522454–24692013.
[Crossref] [PubMed]

Walther, C.

Wang, L. G.

L. G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B. 6871–876 (1989).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl Phys B. 31 (2) 97–105 (1983).
[Crossref]

Werner, D.

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl Phys B. 85, 477–485 (2006).
[Crossref]

Wexler, A.

A. Wexler, “Vapor pressure formulation for water in range 0 to 100°C. A revision,” J. Res. Natl. Bur. Stand. 80A, 775–785 (1977).
[Crossref]

Whiting, E. E.

E. E. Whiting, “An empirical approximation to the Voigt profile,” Journal of Quantitative Spectroscopy and Radiative Transfer 8, 1379–1384 (1968).
[Crossref]

Whittaker, E. A.

Wizemann, H.-D.

F. Spath, S. Metzendorf, A. Behrendt, H.-D. Wizemann, G. Wagner, and V. Wulfmeyer, “Online/off-line injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL,” Opt. Commun. 309, 37–43 (2013).
[Crossref]

Wu, S. T.

Wulfmeyer, V.

G. Wagner, A. Behrendt, V. Wulfmeyer, F. Späth, and M. Schiller, “High-power Ti:sapphire laser at 820 nm for scanning ground-based water vapor differential absorption lidar,” Appl. Opt. 522454–24692013.
[Crossref] [PubMed]

F. Spath, S. Metzendorf, A. Behrendt, H.-D. Wizemann, G. Wagner, and V. Wulfmeyer, “Online/off-line injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL,” Opt. Commun. 309, 37–43 (2013).
[Crossref]

H. R. Khalesifard, A. Fix, G. Ehret, M. Schiller, and V. Wulfmeyer, “Fast-switching system for injection seeding of a high-power Ti:sapphire laser,” Rev. Sci. Instrum. 80, 073110 (2009).
[Crossref] [PubMed]

E. Grard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the water vapor lidar experiment in space (WALES),” Bull. Am. Meteorol. Soc. 85, 237–251 (2004).
[Crossref]

V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304–5320 (2001).
[Crossref]

V. Wulfmeyer and J. Boesenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[Crossref]

Yang, G.

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

M. A. Krainak, A. W. Yu, G. Yang, S. X. Li, and X. Sun, “Photon-counting detectors for space-based laser receivers,” Proc. SPIE Quantum Sensing and Nanophotonic Devices VII,  7608760827 (2010).
[Crossref]

Yanjun, D.

Yu, A. W.

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

M. A. Krainak, A. W. Yu, G. Yang, S. X. Li, and X. Sun, “Photon-counting detectors for space-based laser receivers,” Proc. SPIE Quantum Sensing and Nanophotonic Devices VII,  7608760827 (2010).
[Crossref]

Yu, J.

Zhimin, P.

Zobov, N. F.

European Space Agency J. Callies, R. C. M. Learner, R. Schermaul, N. F. Zobov, D. A. Newnham, J. Ballard, and J. Tennyson, “Measurement of H2O absorption cross-sections,” [Internet]. NCAS British Atmospheric Data Centre, 2000–2014.

Appl Phys B. (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl Phys B. 31 (2) 97–105 (1983).
[Crossref]

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thevenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl Phys B. 85, 477–485 (2006).
[Crossref]

Appl. Opt. (13)

S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thevenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
[Crossref] [PubMed]

V. Wulfmeyer and C. Walther, “Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory,” Appl. Opt. 40, 5304–5320 (2001).
[Crossref]

J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 336294–6302 (1994).
[Crossref] [PubMed]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 6707–717 (1992)
[Crossref]

J. L. Machol, T. Ayers, K. T. Schwenz, K. W. Koenig, R. M. Hardesty, C. J. Senff, M. A. Krainak, J. B. Abshire, H. E. Bravo, and S. P. Sandberg, “Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor,” Appl. Opt. 43, 3110–3121 (2004).
[Crossref] [PubMed]

K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50, 1047–1056 (2011).
[Crossref] [PubMed]

A. Dinovitser, M. Hamilton, and R. Vincent, “Stabilized master laser system for differential absorption lidar,” Appl. Opt. 49, 3274–3281 (2010).
[Crossref] [PubMed]

D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–891 (1965).
[Crossref]

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31718–731 (1992).
[Crossref] [PubMed]

S. Schilt, L. Thevenaz, and P. Robert, “Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation,” Appl. Opt. 33, 6728–6738 (2003).
[Crossref]

V. Wulfmeyer and J. Boesenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
[Crossref]

G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47944–956 (2008).
[Crossref] [PubMed]

G. Wagner, A. Behrendt, V. Wulfmeyer, F. Späth, and M. Schiller, “High-power Ti:sapphire laser at 820 nm for scanning ground-based water vapor differential absorption lidar,” Appl. Opt. 522454–24692013.
[Crossref] [PubMed]

Appl. Phys. B (1)

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

E. Grard, D. G. H. Tan, L. Garand, V. Wulfmeyer, G. Ehret, and P. Di Girolamo, “Major advances foreseen in humidity profiling from the water vapor lidar experiment in space (WALES),” Bull. Am. Meteorol. Soc. 85, 237–251 (2004).
[Crossref]

J. Mol. Spectrosc. (1)

P. L. Ponsardin and E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815 nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[Crossref]

J. Opt. Soc. Am. B. (1)

L. G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B. 6871–876 (1989).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. V. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110533–572 (2009).
[Crossref]

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf. 17, 233–236 (1977).
[Crossref]

J. Res. Natl. Bur. Stand. (1)

A. Wexler, “Vapor pressure formulation for water in range 0 to 100°C. A revision,” J. Res. Natl. Bur. Stand. 80A, 775–785 (1977).
[Crossref]

Journal of Applied Meteorology (1)

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” Journal of Applied Meteorology 20, 1527–1532 (1981).
[Crossref]

Journal of Quantitative Spectroscopy and Radiative Transfer (1)

E. E. Whiting, “An empirical approximation to the Voigt profile,” Journal of Quantitative Spectroscopy and Radiative Transfer 8, 1379–1384 (1968).
[Crossref]

Journal of Research of the National Bureau of Standards. A, Physics and Chemistry (1)

L. Greenspan, “Humidity fixed points of binary saturated aqueous solutions,” Journal of Research of the National Bureau of Standards. A, Physics and Chemistry 81A, 89–96 (1977).
[Crossref]

Opt. Commun. (1)

F. Spath, S. Metzendorf, A. Behrendt, H.-D. Wizemann, G. Wagner, and V. Wulfmeyer, “Online/off-line injection seeding system with high frequency-stability and low crosstalk for water vapor DIAL,” Opt. Commun. 309, 37–43 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. SPIE (1)

M. Hamilton, R. Atkinson, A. Dinovitser, E. Peters, and R. A. Vincent, “Towards low-cost water-vapour differential absorption lidar,” Proc. SPIE 7153, 71530C (2008).

Proc. SPIE Laser Technology for Defense and Security VIII (1)

M. A. Krainak, J. B. Abshire, J. Camp, J. R. Chen, B. Coyle, S. X. Li, K. Numata, H. Riris, M. A. Stephen, P. Stysley, G. Yang, and A. W. Yu, “Laser transceivers for future NASA missions,” Proc. SPIE Laser Technology for Defense and Security VIII,  838183810Y (2012).
[Crossref]

Proc. SPIE Quantum Sensing and Nanophotonic Devices VII (1)

M. A. Krainak, A. W. Yu, G. Yang, S. X. Li, and X. Sun, “Photon-counting detectors for space-based laser receivers,” Proc. SPIE Quantum Sensing and Nanophotonic Devices VII,  7608760827 (2010).
[Crossref]

Rev. Sci. Instrum. (2)

H. R. Khalesifard, A. Fix, G. Ehret, M. Schiller, and V. Wulfmeyer, “Fast-switching system for injection seeding of a high-power Ti:sapphire laser,” Rev. Sci. Instrum. 80, 073110 (2009).
[Crossref] [PubMed]

W. J. Schwenger and J. M. Higbie, ”High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83, 083110 (2012).
[Crossref] [PubMed]

Other (7)

A. Dinovitser, A Stabilized Master Laser System for Differential Absorption LIDAR, University of Adelaide, Australia, PhD Thesis (2012).

R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” Proc. Fourth Symposium on Remote Sensing of the Environment, Ann Arbor, Michigan, 12–24 April, Environmental Research Institute of Michigan, 273–283 (1966).

A. Sennaroglu, Solid-State Lasers and Applications (CRC press, 2006), Chap. 12
[Crossref]

European Space Agency J. Callies, R. C. M. Learner, R. Schermaul, N. F. Zobov, D. A. Newnham, J. Ballard, and J. Tennyson, “Measurement of H2O absorption cross-sections,” [Internet]. NCAS British Atmospheric Data Centre, 2000–2014.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, W. J. Irby Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE)—An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar (Springer-Verlag, 1996), pp. 281–288.

WMO, “Guide to meteorological instruments and methods of observation,” World Meteorological Organization8, 14–25 (2008).

OIML, “The scale of relative humidity of air certified against saturated salt solutions,” Organisation Internationale de Métrologie Légale. OIML R 121, 1 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Absorption spectra obtained using a wavelength scan with 1 μs optical pulses transmitted through our Herriott-like absorption cell. Transmitter and master lasers have different effective absorption cross-sections due to ASE from this optical amplifier in our transmitter. The absorption cross-section measurement described in the text, also calibrates the ASE, and is required for quantitative DIAL measurements. The effective absorption cross-section is calculated from a measurement of the attenuation through an open multi-path absorption cell of known length, and measured water molecule number density. The number density can be measured in various ways, we use a low-cost RH sensor calibrated against three saturated salt solutions as humidity references.
Fig. 2
Fig. 2 Voigt model profiles of the 822.922 nm line at various altitudes including pressure shift, using HITRAN-08. As altitude increases and pressure decreases, pressure broadening and shift decrease. Lorentz broadening dominates at low altitudes, while Doppler broadening dominates at high altitudes. At 16 km, pressure is reduced by a factor of 10, while the peak absorption cross-section is reduced by a factor of only ∼2. Therefore, extinction can be significant despite the sparse atmosphere. Furthermore, for a small shift in wavelength (dotted vertical lines), the reduction in absorption cross-section is much greater at 16 km (red) than at sea level, STP (blue).
Fig. 3
Fig. 3 DIAL control system showing the on-line laser stabilization system, two off-line stabilization systems, and arrows indicating additional layers to scale the system to any number of additional off-line or side-line wavelengths. The system enclosed by the red dashed square is equivalent to the original 2-wavelength design [23], with the on-line laser at the 822.922 nm water resonance, and one off-line stabilized by a 16 GHz optical beat frequency, equivalent to a ∼30 pm offset. The wavelength stabilization loops use a lock-in amplifier consisting of an analog mixer (AD633) and low-pass filter. 16 GHz beat frequency is measured by a bandpass filter RF-1 to stabilize the second laser to the desired optical frequency offset. Similarly, a third laser is stabilized with a bandpass filter RF-2. The transmitted pulse is formed as the timing system energizes an Acousto-Optic Modulator (AOM, Crystal Technology 3080-120) to briefly switch the light out of each laser control system, while simultaneously energizing a tapered Semiconductor Optical Amplifier (SOA, Sacher Lasertechnik TEC-400-830-500) to form the 1 μs output pulse with a 5%–95% rise and fall transition time of 8 ns. Atmospheric observations described here are performed using two wavelengths, with each wavelength firing at 1.5 kHz for a transmitted pulse repetition rate of 3 kHz.
Fig. 4
Fig. 4 This figure and histogram illustrate the optical frequency deviation of the on-line master laser from the water vapor resonance line of less than 2 MHz RMS, and the performance of the on-line wavelength stabilization system built with low cost general purpose components, eg: TL074 operational amplifiers. The 1f demodulation together with a deep 500 MHz wavelength modulation, results in a strong error signal and the excellent relative stability. This measurement is made with a sampling rate of 100 Hz for 10 minutes, over a bandwidth of 2 mHz to 50 Hz. This measurement is performed from the noise in the control loop, and does not capture fast optical frequency fluctuations and broadening of the optical spectrum, however, these are measured by the effective absorption cross-section, as discussed in Section 3.
Fig. 5
Fig. 5 System layout used to acquire data in Figure 1 as well as for the calibration. A thin etalon produces fringes when the light is coherent, which is used to align the Semiconductor Optical Amplifier (SOA) by maximizing fringe contrast. For the calibration, pulses from the SOA are acquired from both input and output of the vapor cell, as the laser temperature and wavelength are scanned across the absorption line. Signal processing in software is then used to perform the delay time compensation, as well as division for the ratiometric measurement of the absorption signal. From this measurement, the relative ratio of on-line and off-line attenuation is measured to calculate the extinction, that is used to calculate the effective absorption cross-section.
Fig. 6
Fig. 6 Observation arrangement for atmospheric transmission. In order to direct the observation vertically through the atmosphere, the astigmatically corrected and collimated beam is directed by periscope to a large external mirror, mounted at 45° outside. Both the transmitted and scattered return light are reflected off this mirror.
Fig. 7
Fig. 7 Figure illustrating the integrated photon count vs range with one off-line wavelength offset by 16 GHz from on-line. The first 1 μs (150 m) of return data is invalidated by the scatter from the external mirror due to the arrangement illustrated in Fig. 6, with wavelength-specific difference likely due to speckle and chirp in the 1 μs pulse. Differential attenuation in the on-line (blue) and off-line (red) curves is visible up to 1 km, however, noise in the data precludes meaningful results past 700 m. Cloud backscatter at 2.4 km only appears in the off-line channel illustrating complete attenuation of the on-line signal at that range. A change in the shape of the off-line profile indicates the location of the boundary layer up to ∼1 km, characterized by its aerosol and moisture content. This low-power system relies on the boundary layer aerosols to acquire a return signal up to 1 km.
Fig. 8
Fig. 8 Figure illustrating DIAL inversion of the data illustrated in Fig. 7, as well as the radiosonde data. Poisson statistics were used to slightly increase the available range. As the altitude increases, and so the intensity of the scattered pulse falls, ambient light and the dark count become a substantial fraction of the measured count, introducing a significant bias into the measurement. To correct for this, we measure the dark count during the period immediately before the pulse is transmitted. As this measurement is itself random, we construct an estimator for the unknown additional scattering count, rather than simply subtracting it from the measured values. Since photon counts are discrete, we use Poisson statistics, and thus maximum-a-posteriori estimation with an uninformative uniform prior on the scattering rate λ̂s yields λ̂s = max{0, λ̂λ̂d}. It should be noted, however, that this process itself yields a slightly biased estimator, and therefore if further filtering is to be performed, then it may be desirable to use the unbiased estimator λ̂λ̂d.

Tables (3)

Tables Icon

Table 1 Spectroscopic parameters of the 822.922 nm water line in recent HITRAN and ESA [14] database releases, illustrating the need for independent line-specific calibration for quantitative measurement

Tables Icon

Table 2 Number density (ℕ) and mixing ratio (r) calculated from RH and temperature measured during the observation experiment. Note how temperature and RH change significantly while number density remains constant.

Tables Icon

Table 3 Comparison with radiosonde data from Adelaide airport. The low latitude radiosonde results show a higher water content than DIAL, as well as the humidity measured in our lab at this time. Such differences may be partly due to radiosonde calibration, as well as the local conditions at the airport that include mostly open grass, while the University campus ground is mostly sealed. Another interesting observation, is that the discrepancy seems to decline with altitude, as expected with more homogeneous atmospheric composition due to reduced ground effects. This discrepancy at low altitude was observed systematically during other observations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n a ( r ) = 1 2 Δ r ( σ on σ off ) ln ( N on ( r 1 ) N off ( r 2 ) N on ( r 2 ) N off ( r 1 ) ) .
𝕋 = I I 0 = exp ( σ L ) ,
e = U e s / 100
e s = exp ( 2991.2729 T 2 6017.0128 T 1 + 18.87643854 2.8354721 × 10 2 T + 1.7838301 × 10 5 T 2 8.4150417 × 10 10 T 3 + 4.4412543 × 10 13 T 4 + 2.858487 ln ( T ) )
σ eff = 1 x ln ( 𝕋 ) = 1.49 × 10 22 cm 2 .

Metrics