Abstract

All-optical wavelength conversion of a complex (amplitude and phase) optical signal is proposed based on an all-optical implementation of time-domain holography. The temporal holograms are generated through a cross-phase modulation (XPM) process in a highly-nonlinear optical fiber, avoiding the necessity of accomplish the phase matching condition between the involved pump and probe signals, and reducing the power requirements compared to those of the traditional wavelength conversion implementations using four wave mixing (FWM). The proposed scheme also achieves symmetric conversion efficiency for up- and down-conversion. As a proof-of-concept, wavelength conversion of a train of 10 GHz chirped Gaussian-like pulses and their conjugated is experimentally demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

María R. Fernández-Ruiz, Lei Lei, Martin Rochette, and José Azaña, "All-optical wavelength conversion based on time-domain holography: erratum," Opt. Express 23, 24859-24859 (2015)
http://proxy.osapublishing.org/oe/abstract.cfm?uri=oe-23-19-24859

OSA Recommended Articles
All-optical wavelength conversion for mode division multiplexed superchannels

Jiaxin Gong, Jing Xu, Ming Luo, Xiang Li, Ying Qiu, Qi Yang, Xinliang Zhang, and Shaohua Yu
Opt. Express 24(8) 8926-8939 (2016)

Wavelength conversion using fiber cross-phase modulation driven by two pump waves

Shigeki Watanabe, Tomoyuki Kato, Takahito Tanimura, Carsten Schmidt-Langhorst, Robert Elschner, Isaac Sackey, Colja Schubert, and Takeshi Hoshida
Opt. Express 27(12) 16767-16780 (2019)

Temporal phase conjugation based on time-domain holography

María R. Fernández-Ruiz and José Azaña
Opt. Lett. 40(1) 127-130 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Coherent Optical Communications: Historical Perspectives and Future Directions,” in M. Nakazawa, K. Kikuchi and T. Miyazaki. (eds.) High spectral density optical communication technologies, Optical and Fiber Communications reports 6, (Springer-Verlag Berlin Heidelberg, 2010).
  2. S. L. Danielsen, P. B. Hansen, and K. E. Stubkjaer, “Wavelength conversion in optical packet switching,” J. Lightwave Technol. 16(12), 2095–2108 (1998).
    [Crossref]
  3. R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 Gbaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
    [Crossref] [PubMed]
  4. G. W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
    [Crossref] [PubMed]
  5. A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photonics Technol. Lett. 10(7), 952–954 (1998).
    [Crossref]
  6. L. Xu, N. Ophir, M. Menard, R. K. W. Lau, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Simultaneous wavelength conversion of ASK and DPSK signals based on four-wave-mixing in dispersion engineered silicon waveguides,” Opt. Express 19(13), 12172–12179 (2011).
    [Crossref] [PubMed]
  7. J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, “Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration,” J. Lightwave Technol. 24(7), 2851–2858 (2006).
    [Crossref]
  8. M. F. Huang, J. Yu, and G. K. Chang, “Polarization insensitive wavelength conversion for 4x112Gbit/s polarization multiplexing RZ-QPSK signals,” Opt. Express 16(26), 21161–21169 (2008).
    [Crossref] [PubMed]
  9. J. Yu, X. Zheng, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “40-Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror,” J. Lightwave Technol. 18(7), 1001–1006 (2000).
    [Crossref]
  10. M. Galili, L. K. Oxenløwe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s,” IEEE J. Sel. Top. Quantum Electron. 14(3), 573–579 (2008).
    [Crossref]
  11. B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photonics Technol. Lett. 12(7), 846–848 (2000).
    [Crossref]
  12. C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM,” IEEE Photonics Technol. Lett. 17(12), 2655–2657 (2005).
    [Crossref]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  14. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007).
    [Crossref] [PubMed]
  15. M. R. Fernández-Ruiz, M. Li, and J. Azaña, “Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes,” Opt. Express 21(8), 10314–10323 (2013).
    [Crossref] [PubMed]
  16. A. V. Oppenheim and A. S. Willsky, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).
  17. Y. Chen, “Four-wave mixing in optical fibers: exact solution,” J. Opt. Soc. Am. B 6(11), 1986–1993 (1989).
    [Crossref]

2014 (2)

2013 (1)

2011 (1)

2008 (2)

M. F. Huang, J. Yu, and G. K. Chang, “Polarization insensitive wavelength conversion for 4x112Gbit/s polarization multiplexing RZ-QPSK signals,” Opt. Express 16(26), 21161–21169 (2008).
[Crossref] [PubMed]

M. Galili, L. K. Oxenløwe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s,” IEEE J. Sel. Top. Quantum Electron. 14(3), 573–579 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM,” IEEE Photonics Technol. Lett. 17(12), 2655–2657 (2005).
[Crossref]

2000 (2)

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photonics Technol. Lett. 12(7), 846–848 (2000).
[Crossref]

J. Yu, X. Zheng, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “40-Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror,” J. Lightwave Technol. 18(7), 1001–1006 (2000).
[Crossref]

1998 (2)

S. L. Danielsen, P. B. Hansen, and K. E. Stubkjaer, “Wavelength conversion in optical packet switching,” J. Lightwave Technol. 16(12), 2095–2108 (1998).
[Crossref]

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photonics Technol. Lett. 10(7), 952–954 (1998).
[Crossref]

1989 (1)

Adams, R.

Ayotte, S.

Azaña, J.

Bergman, K.

Bjarklev, A.

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM,” IEEE Photonics Technol. Lett. 17(12), 2655–2657 (2005).
[Crossref]

Blumenthal, D. J.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photonics Technol. Lett. 12(7), 846–848 (2000).
[Crossref]

Chagnon, M.

Chang, G. K.

Chen, L. R.

Chen, Y.

Chow, K. K.

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM,” IEEE Photonics Technol. Lett. 17(12), 2655–2657 (2005).
[Crossref]

Clausen, A. T.

M. Galili, L. K. Oxenløwe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s,” IEEE J. Sel. Top. Quantum Electron. 14(3), 573–579 (2008).
[Crossref]

J. Yu, X. Zheng, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “40-Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror,” J. Lightwave Technol. 18(7), 1001–1006 (2000).
[Crossref]

Cohen, O.

D’Ottavi, A.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photonics Technol. Lett. 10(7), 952–954 (1998).
[Crossref]

Dall’Ara, R.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photonics Technol. Lett. 10(7), 952–954 (1998).
[Crossref]

Danielsen, S. L.

Fernández-Ruiz, M. R.

Foster, M. A.

Gaeta, A. L.

Galili, M.

M. Galili, L. K. Oxenløwe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s,” IEEE J. Sel. Top. Quantum Electron. 14(3), 573–579 (2008).
[Crossref]

Guekos, G.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photonics Technol. Lett. 10(7), 952–954 (1998).
[Crossref]

Hansen, P. B.

Huang, M. F.

Hunziker, G.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photonics Technol. Lett. 10(7), 952–954 (1998).
[Crossref]

Jeppesen, P.

M. Galili, L. K. Oxenløwe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s,” IEEE J. Sel. Top. Quantum Electron. 14(3), 573–579 (2008).
[Crossref]

J. Yu, X. Zheng, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “40-Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror,” J. Lightwave Technol. 18(7), 1001–1006 (2000).
[Crossref]

Jia, Z.

Kawanishi, T.

Kwok, C. H.

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM,” IEEE Photonics Technol. Lett. 17(12), 2655–2657 (2005).
[Crossref]

Lau, R. K. W.

Lee, S. H.

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM,” IEEE Photonics Technol. Lett. 17(12), 2655–2657 (2005).
[Crossref]

Li, J.

Li, M.

Lin, C.

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM,” IEEE Photonics Technol. Lett. 17(12), 2655–2657 (2005).
[Crossref]

Lipson, M.

Lu, G. W.

Ma, J.

Malekiha, M.

Menard, M.

Mulvad, H. C. H.

M. Galili, L. K. Oxenløwe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s,” IEEE J. Sel. Top. Quantum Electron. 14(3), 573–579 (2008).
[Crossref]

Ohlen, P.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photonics Technol. Lett. 12(7), 846–848 (2000).
[Crossref]

Olsson, B. E.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photonics Technol. Lett. 12(7), 846–848 (2000).
[Crossref]

Ophir, N.

Oxenløwe, L. K.

M. Galili, L. K. Oxenløwe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s,” IEEE J. Sel. Top. Quantum Electron. 14(3), 573–579 (2008).
[Crossref]

Paiella, R.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photonics Technol. Lett. 10(7), 952–954 (1998).
[Crossref]

Paniccia, M. J.

Peucheret, C.

Plant, D. V.

Poulsen, H. N.

Rau, L.

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photonics Technol. Lett. 12(7), 846–848 (2000).
[Crossref]

Rong, H.

Sakamoto, T.

Sang, X.

Shu, C.

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM,” IEEE Photonics Technol. Lett. 17(12), 2655–2657 (2005).
[Crossref]

Spano, P.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photonics Technol. Lett. 10(7), 952–954 (1998).
[Crossref]

Spasojevic, M.

Stubkjaer, K. E.

Turner-Foster, A. C.

Vahala, K. J.

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photonics Technol. Lett. 10(7), 952–954 (1998).
[Crossref]

Wang, T.

Xu, L.

Xu, S.

Yu, C.

Yu, J.

Zheng, X.

Zhou, Z.

IEEE J. Sel. Top. Quantum Electron. (1)

M. Galili, L. K. Oxenløwe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s,” IEEE J. Sel. Top. Quantum Electron. 14(3), 573–579 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (3)

B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photonics Technol. Lett. 12(7), 846–848 (2000).
[Crossref]

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM,” IEEE Photonics Technol. Lett. 17(12), 2655–2657 (2005).
[Crossref]

A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, and K. J. Vahala, “Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval,” IEEE Photonics Technol. Lett. 10(7), 952–954 (1998).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (1)

Other (3)

K. Kikuchi, “Coherent Optical Communications: Historical Perspectives and Future Directions,” in M. Nakazawa, K. Kikuchi and T. Miyazaki. (eds.) High spectral density optical communication technologies, Optical and Fiber Communications reports 6, (Springer-Verlag Berlin Heidelberg, 2010).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

A. V. Oppenheim and A. S. Willsky, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Scheme for performing wavelength conversion based on XPM; (b) Spectra before and after the high nonlinear fiber (HNLF): Blue components represent the information signal, the yellow component represents the conjugated signal and the dashed grey component represents the conjugated signal resulting from FWM between the pump’s components.
Fig. 2
Fig. 2 Scheme of the central frequency of the signals involved in the wavelength conversion process and nomenclature given to the spectral separation between signals to develop the equations of phase-matching condition (see Eq. (5)).
Fig. 3
Fig. 3 Results from the numerical simulation of the proposed scheme (no phase-matching) (a) Spectrum at the output of the HNLF; dashed red line represents the applied numerical band-pass filter (BPF). (b) Temporal waveform after the BPF (blue line); transform-limited input before the propagation through the SMF (red line); wavelength-converted output after compensating the dispersion from the SMF (black line).
Fig. 4
Fig. 4 Results from the numerical simulation of the proposed scheme (a) Spectrum at the output of the HNLF; dashed red line represents the applied numerical band-pass filter (BPF). (b) Temporal waveform after the BPF (blue line); transform-limited input before the propagation through the SMF (red line); wavelength-converted output after compensating the dispersion from the SMF (black line).
Fig. 5
Fig. 5 Experimental setup of the XPM-based wavelength converted scheme for complex signals. AMLL: Active Mode-Locked Laser; PC: Polarization controller; CWL: Continuous-wave laser; EDFA: Erbium-doped fiber amplifier. OSO: Optical sampling oscilloscope.
Fig. 6
Fig. 6 (a) Down-conversion of eS(t); (b) Up-conversion of eS(t); (c) Down-conversion of eS*(t); a-c (1) Spectrum after HNLF; a,b (2) Temporal signal after BPF (green line) vs input signal (dashed blue line); c (2) includes output from AMLL (red line) and signal after dispersion compensation (black line).
Fig. 7
Fig. 7 Conversion efficiency of the XPM-based wavelength converter scheme as a function of the wavelength shift Δ λ , for the cases of down-conversion (solid blue line) and up-conversion (dashed black line).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P p u m p ( t ) | e S ( t ) + j e L O , 1 ( t ) | 2 = i L O , 1 + | e S ( t ) | 2 + 2 i L O , 1 | e s 0 ( t ) | sin ( 2 π f i t + e s 0 ( t ) e L O , 1 ( t ) ) ,
e o u t ( t ) = e L O , 2 ( t ) exp { j 2 γ P p u m p ( t ) L } ,
e o u t ( t ) e L O , 2 ( t ) exp { j 2 γ L i L O , 1 | e s 0 ( t ) | sin ( 2 π f i t + e s 0 ( t ) ) } .
e o u t ( t ) = i L O , 2 exp { 2 π f L O , 2 t } · ( 1 + j 2 γ L i L O , 1 | e s 0 ( t ) | sin ( 2 π f i t + e s 0 ( t ) ) ) .
k 4 , 1 = Δ κ 4 , 1 + γ ( P S P L O , 1 ) = β 2 [ 2 Δ ω p 2 2 Δ ω s Δ ω p ] + β 3 [ Δ ω p 3 2 Δ ω s Δ ω p 2 Δ ω s 2 Δ ω p ] + γ ( P S P L O , 1 ) ,
k 4 , 2 = Δ κ 4 , 2 + γ P L O , 1 = k 4 , 1 = β T , 1 β T , 2 β T , 3 + β T , 4 + γ P L O , 1 = β 2 [ 2 Δ ω p 2 2 Δ ω s Δ ω p ] + β 3 [ Δ ω p 3 + 2 Δ ω s Δ ω p 2 Δ ω s 2 Δ ω p ] + γ P L O , 1 .
i L O , 1 > > | e s 0 ( t ) | 2 , i L O , 2 | e o u t ( t ) | 2 = 0.

Metrics