Abstract

Intracavity continuous-wave (CW) multiple stimulated-Raman-scattering emissions have been successfully demonstrated in a KTP crystal pumped by a Nd:YVO4 1064-nm laser for the first time. Three different output couplers (OCs) with high-reflection (HR) coating in the range of 1-1.1, 1-1.13, and 1-1.15 μm are employed in the experiment to generate lasing wavelengths at 1095 (the first-Stokes emission of the 266 cm−1 Raman shift), 1095 + 1128 (the first- and second-Stokes emission of the 266 cm−1 Raman shift), and 1095 + 1128 + 1149 nm (the first two Stokes emissions of the 266 cm−1 Raman shift and the first-Stokes emission of the 694 cm−1 Raman shift), separately. This Raman laser paves a way to produce more-closely spaced set of CW emission in the green-yellow region.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. F. Weigl, “A generalized technique of two-wavelength, nondiffuse holographic interferometry,” Appl. Opt. 10(1), 187–192 (1971).
    [Crossref] [PubMed]
  2. S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors 11(6), 6125–6130 (2011).
    [Crossref] [PubMed]
  3. P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23(3), 121–126 (2008).
    [Crossref]
  4. N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).
  5. R. W. Farley and P. D. Dao, “Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system,” Appl. Opt. 34(21), 4269–4273 (1995).
    [Crossref] [PubMed]
  6. Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
    [Crossref]
  7. Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
    [Crossref] [PubMed]
  8. Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2→4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 39(6), 1477–1480 (2014).
  9. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
    [Crossref] [PubMed]
  10. G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
    [Crossref]
  11. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
    [Crossref] [PubMed]
  12. C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
    [Crossref]
  13. C. Y. Cho, T. L. Huang, S. M. Wen, Y. J. Huang, K. F. Huang, and Y. F. Chen, “Nd:YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm,” Opt. Express 22(21), 25318–25323 (2014).
    [Crossref] [PubMed]
  14. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
    [Crossref] [PubMed]
  15. H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
    [Crossref] [PubMed]
  16. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
    [Crossref]
  17. H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci. 4(3), 241–253 (2003).
    [Crossref] [PubMed]
  18. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
    [Crossref]
  19. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29(16), 1915–1917 (2004).
    [Crossref] [PubMed]
  20. Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett. 29(22), 2632–2634 (2004).
    [Crossref] [PubMed]
  21. J. Findeisen, H. J. Eichler, and P. Peuser, “Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
    [Crossref]
  22. R. Lan, S. Ding, M. Wang, and J. Zhang, “A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation,” Laser Phys. Lett. 10(2), 025801 (2013).
    [Crossref]
  23. Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett. 30(24), 3335–3337 (2005).
    [Crossref] [PubMed]
  24. Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
    [Crossref]
  25. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [Crossref]
  26. L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, “SrWO4:Nd3+ – new material for multifunctional laser,” Opt. Mater. 23(1–2), 439–442 (2003).
    [Crossref]

2014 (4)

2013 (2)

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

R. Lan, S. Ding, M. Wang, and J. Zhang, “A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation,” Laser Phys. Lett. 10(2), 025801 (2013).
[Crossref]

2011 (1)

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors 11(6), 6125–6130 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

2008 (4)

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23(3), 121–126 (2008).
[Crossref]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[Crossref]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
[Crossref] [PubMed]

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[Crossref] [PubMed]

2005 (1)

2004 (3)

2003 (3)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, “SrWO4:Nd3+ – new material for multifunctional laser,” Opt. Mater. 23(1–2), 439–442 (2003).
[Crossref]

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci. 4(3), 241–253 (2003).
[Crossref] [PubMed]

2001 (1)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

2000 (1)

J. Findeisen, H. J. Eichler, and P. Peuser, “Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
[Crossref]

1995 (1)

1982 (1)

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

1971 (1)

Bagaev, S. N.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

Barnes, J. C.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

Basiev, T. T.

L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, “SrWO4:Nd3+ – new material for multifunctional laser,” Opt. Mater. 23(1–2), 439–442 (2003).
[Crossref]

Basov, N. G.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Boixeda, P.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23(3), 121–126 (2008).
[Crossref]

Carmona, L. P.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23(3), 121–126 (2008).
[Crossref]

Chang, J.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Chang, Y. T.

Chen, Y. F.

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
[Crossref] [PubMed]

C. Y. Cho, T. L. Huang, S. M. Wen, Y. J. Huang, K. F. Huang, and Y. F. Chen, “Nd:YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm,” Opt. Express 22(21), 25318–25323 (2014).
[Crossref] [PubMed]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2→4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 39(6), 1477–1480 (2014).

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express 16(11), 8286–8291 (2008).
[Crossref] [PubMed]

Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett. 30(24), 3335–3337 (2005).
[Crossref] [PubMed]

Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29(16), 1915–1917 (2004).
[Crossref] [PubMed]

Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett. 29(22), 2632–2634 (2004).
[Crossref] [PubMed]

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Chen, Y. S.

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Chiang, S. Y.

Cho, C. Y.

C. Y. Cho, T. L. Huang, S. M. Wen, Y. J. Huang, K. F. Huang, and Y. F. Chen, “Nd:YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm,” Opt. Express 22(21), 25318–25323 (2014).
[Crossref] [PubMed]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Chyba, T. H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

Dao, P. D.

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[Crossref]

Ding, S.

R. Lan, S. Ding, M. Wang, and J. Zhang, “A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation,” Laser Phys. Lett. 10(2), 025801 (2013).
[Crossref]

Duan, Y.

Eichler, H. J.

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci. 4(3), 241–253 (2003).
[Crossref] [PubMed]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

J. Findeisen, H. J. Eichler, and P. Peuser, “Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
[Crossref]

Fan, S.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Farley, R. W.

Findeisen, J.

J. Findeisen, H. J. Eichler, and P. Peuser, “Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
[Crossref]

Gad, G. M. A.

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci. 4(3), 241–253 (2003).
[Crossref] [PubMed]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

Gubin, M. A.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Guo, S. Y.

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

Huang, K. F.

C. Y. Cho, T. L. Huang, S. M. Wen, Y. J. Huang, K. F. Huang, and Y. F. Chen, “Nd:YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm,” Opt. Express 22(21), 25318–25323 (2014).
[Crossref] [PubMed]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Huang, T. L.

Huang, Y. J.

Huang, Y. P.

Ivleva, L. I.

L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, “SrWO4:Nd3+ – new material for multifunctional laser,” Opt. Mater. 23(1–2), 439–442 (2003).
[Crossref]

Jaén, P.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23(3), 121–126 (2008).
[Crossref]

Jiang, M. H.

Jin, G.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Kaminskii, A. A.

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci. 4(3), 241–253 (2003).
[Crossref] [PubMed]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

Kang, J. U.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors 11(6), 6125–6130 (2011).
[Crossref] [PubMed]

Kim, C. S.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors 11(6), 6125–6130 (2011).
[Crossref] [PubMed]

Kouta, H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

Kuwano, Y.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

Lan, R.

R. Lan, S. Ding, M. Wang, and J. Zhang, “A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation,” Laser Phys. Lett. 10(2), 025801 (2013).
[Crossref]

Lanigan, S. W.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23(3), 121–126 (2008).
[Crossref]

Liang, H. C.

Liu, Z.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Lu, J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

Luo, H.

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[Crossref] [PubMed]

Mildren, R. P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[Crossref]

Murai, T.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

Nakamura, S.

Nikitin, V. V.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Nikuchin, A. V.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Ogawa, T.

Osiko, V. V.

L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, “SrWO4:Nd3+ – new material for multifunctional laser,” Opt. Mater. 23(1–2), 439–442 (2003).
[Crossref]

Pask, H. M.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[Crossref]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

Petrovskii, V. N.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Peuser, P.

J. Findeisen, H. J. Eichler, and P. Peuser, “Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
[Crossref]

Piper, J. A.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[Crossref]

Polozkov, N. M.

L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, “SrWO4:Nd3+ – new material for multifunctional laser,” Opt. Mater. 23(1–2), 439–442 (2003).
[Crossref]

Protsenko, E. D.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Qian, L. J.

Rhee, H.

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci. 4(3), 241–253 (2003).
[Crossref] [PubMed]

Shao, Z.

Son, S. N.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors 11(6), 6125–6130 (2011).
[Crossref] [PubMed]

Song, J. J.

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors 11(6), 6125–6130 (2011).
[Crossref] [PubMed]

Spence, D. J.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[Crossref]

Su, K. W.

Sun, W.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Tan, W. D.

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

Tang, C. Y.

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2→4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 39(6), 1477–1480 (2014).

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
[Crossref] [PubMed]

Tang, D.

Tang, D. Y.

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[Crossref] [PubMed]

Tao, X.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Tao, X. T.

Tsai, S. W.

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

Tuan, P. H.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Tyurikov, D. A.

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

Tzeng, Y. S.

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2→4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 39(6), 1477–1480 (2014).

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, “Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media,” Opt. Lett. 39(6), 1477–1480 (2014).
[Crossref] [PubMed]

Ueda, K.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

Vano-Galvan, S.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23(3), 121–126 (2008).
[Crossref]

Voronina, I. S.

L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, “SrWO4:Nd3+ – new material for multifunctional laser,” Opt. Mater. 23(1–2), 439–442 (2003).
[Crossref]

Wada, S.

Wang, H.

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Wang, J. Y.

Wang, M.

R. Lan, S. Ding, M. Wang, and J. Zhang, “A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation,” Laser Phys. Lett. 10(2), 025801 (2013).
[Crossref]

Wang, Q.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Weigl, F.

Wen, S. M.

Xie, G. Q.

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[Crossref] [PubMed]

Yoshioka, H.

Yu, H. H.

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[Crossref] [PubMed]

Yu, Y. T.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Zhang, H.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Zhang, H. J.

Zhang, J.

H. Zhu, Z. Shao, H. Wang, Y. Duan, J. Zhang, D. Tang, and A. A. Kaminskii, “Multi-order Stokes output based on intra-cavity KTiOAsO₄ Raman crystal,” Opt. Express 22(16), 19662–19667 (2014).
[Crossref] [PubMed]

R. Lan, S. Ding, M. Wang, and J. Zhang, “A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation,” Laser Phys. Lett. 10(2), 025801 (2013).
[Crossref]

Zhang, S.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Zhang, X.

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Zhu, H.

Zverev, P. G.

L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, “SrWO4:Nd3+ – new material for multifunctional laser,” Opt. Mater. 23(1–2), 439–442 (2003).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (3)

Z. Liu, Q. Wang, X. Zhang, Z. Liu, J. Chang, H. Wang, S. Zhang, S. Fan, W. Sun, G. Jin, X. Tao, S. Zhang, and H. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[Crossref]

Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79(2), 207–210 (2004).
[Crossref]

G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, S. Y. Guo, H. H. Yu, and H. J. Zhang, “Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser,” Appl. Phys. B 95(4), 691–695 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2→4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 39(6), 1477–1480 (2014).

Izv. Akad. Nauk SSSR, Ser. Fiz. (1)

N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1573–1583 (1982).

J. Zhejiang Univ. Sci. (1)

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci. 4(3), 241–253 (2003).
[Crossref] [PubMed]

Laser Phys. Lett. (2)

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

R. Lan, S. Ding, M. Wang, and J. Zhang, “A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation,” Laser Phys. Lett. 10(2), 025801 (2013).
[Crossref]

Med. Laser Appl. (1)

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl. 23(3), 121–126 (2008).
[Crossref]

Opt. Commun. (2)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194(1–3), 201–206 (2001).
[Crossref]

J. Findeisen, H. J. Eichler, and P. Peuser, “Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser,” Opt. Commun. 181(1–3), 129–133 (2000).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. (1)

L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. Zverev, V. V. Osiko, and N. M. Polozkov, “SrWO4:Nd3+ – new material for multifunctional laser,” Opt. Mater. 23(1–2), 439–442 (2003).
[Crossref]

Prog. Quantum Electron. (2)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[Crossref]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3–4), 121–158 (2008).
[Crossref]

Sensors (1)

S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors 11(6), 6125–6130 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental configuration for an end-pumped YVO4/Nd:YVO4 laser with KTP crystal as an intra-cavity Raman crystal.
Fig. 2
Fig. 2 The spontaneous Raman spectra of the KTP crystal in the X(ZZ)X and X(YZ)X configurations.
Fig. 3
Fig. 3 The reflection spectra for the used output couplers.
Fig. 4
Fig. 4 Average output powers of the Stokes waves and the fundamental wave with respect to incident pump powers for different output couplers.
Fig. 5
Fig. 5 Lasing spectra for (a) OC1 at incident pump power of 16.5 W, (b) OC2 at incident pump power of 16.5 W, and (c) OC3 at incident pump power of 15.1 W.

Metrics