Abstract

The weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) with colorless and channelized mode features is a new-class optical transmitter fulfilling the need of next-generation communications. By packaging the colorless WRC-FPLD transmitter with a 10-GHz transistor-outline-56-can (TO-56-can), the premier demonstration on directly modulated 42-Gbit/s/channel quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) transmission is demonstrated via wavelength injection-locking. Enlarging the injection level effectively up-shifts the relaxation oscillation peak and suppresses the relative intensity noise, which facilitates the TO-56-can packaged WRC-FPLD to improve its modulation throughput bandwidth to 9 GHz and enhance its signal-to-noise ratio to 22 dB. By pre-amplifying the directly modulated QAM-OFDM data with a total raw bit rate of 42 Gbit/s, the receiving bit-error-rate (BER) under back-to-back transmission can be reduced below the forward-error-correction (FEC) limited BER of 3.8 × 10−3. Such a colorless WRC-FPLD enables the QAM-OFDM transmission over a 25-km long single-mode-fiber based metropolitan access network with its BER matching the FEC criterion at a receiving power of −2 dBm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF

Yi-Cheng Li, Yu-Chieh Chi, Min-Chi Cheng, I-Cheng Lu, Jason Chen, and Gong-Ru Lin
Opt. Express 21(14) 16722-16735 (2013)

Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission

Min-Chi Cheng, Yu-Chieh Chi, Yi-Cheng Li, Cheng-Ting Tsai, and Gong-Ru Lin
Opt. Express 22(13) 15724-15736 (2014)

Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode

Yu-Chieh Chi, Yi-Cheng Li, Huai-Yung Wang, Peng-Chun Peng, Hai-Han Lu, and Gong-Ru Lin
Opt. Express 20(18) 20071-20077 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans. Microw. Theory Tech. 49(8), 1404–1409 (2001).
    [Crossref]
  2. J. Lowery, L. B. Y. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25(1), 131–138 (2007).
    [Crossref]
  3. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  4. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [Crossref]
  5. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
    [Crossref]
  6. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
    [Crossref]
  7. Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
    [Crossref] [PubMed]
  8. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
    [Crossref]
  9. T. Tanaka, M. Nishihara, T. Takahara, L. Li, Z. Tao, and J. C. Rasmussen, “50 Gbps Class Transmission in Single Mode Fiber using Discrete Multi-tone Modulation with 10G Directly Modulated Laser,” in Optical Fiber Communication / National Fiber Optic Engineers Conference (OFC/NFOEC), (Optical Society of America, Los Angeles, California, 2012) Paper OTh4G.3.
    [Crossref]
  10. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
    [Crossref]
  11. G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 18(2), 125–143 (2000).
    [Crossref]
  12. W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
    [Crossref]
  13. G.-R. Lin, T.-K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express 17(20), 17739–17746 (2009).
    [Crossref] [PubMed]
  14. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture” in European Conference on Optical Communication (ECOC), (Institution of Engineering and Technology, Brussels, Belgium,) pp. 39–49.
    [Crossref]
  15. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
    [Crossref]
  16. H. Yeh, C. W. Chow, Y. F. Wu, and H. Y. Chen, “Demonstrations of 10 and 40Gbps upstream transmissions using 1.2 GHz RSOA-based ONU in long-reach access networks,” Opt. Fiber Technol. 18(2), 63–67 (2012).
    [Crossref]
  17. Z. Xu, Y.-J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express 15(6), 2953–2962 (2007).
    [Crossref] [PubMed]
  18. C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
    [Crossref]
  19. G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol. 27(14), 2779–2785 (2009).
    [Crossref]
  20. C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry-Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett. 48(15), 940–942 (2012).
    [Crossref]
  21. Z. Xu, Y. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-divisionmultiplexing OFDM-PON,” in Proc. Optical Fiber Communication Conference (2012), Los Angeles, USA, Paper OW4B.3.
    [Crossref]
  22. H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection locked Fabry–Perot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. J. 5(3), 7901208 (2013).
    [Crossref]
  23. Y.-S. Liao, H.-C. Kuo, Y.-J. Chen, and G.-R. Lin, “Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet,” Opt. Express 17(6), 4859–4867 (2009).
    [Crossref] [PubMed]
  24. G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol. 28(20), 2925–2932 (2010).
    [Crossref]
  25. W.-D. Xiong, W.-D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive Weak-resonant-cavity Fabry–Perot laser diodes,” J. Lightwave Technol. 30(3), 355–361 (2012).
    [Crossref]
  26. I.-C. Lu, C.-C. Wei, W.-J. Jiang, H.-Y. Chen, Y.-C. Chi, Y.-C. Li, D.-Z. Hsu, G.-R. Lin, and J. Chen, “20-Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” Opt. Express 21(7), 8622–8629 (2013).
    [Crossref] [PubMed]
  27. M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22(13), 15724–15736 (2014).
    [Crossref] [PubMed]
  28. T.-T. Shih, P.-H. Tseng, Y.-Y. Lai, and W.-H. Cheng, “Compact TO-CAN header with bandwidth excess 40 GHz,” J. Lightwave Technol. 29(17), 2538–2544 (2011).
    [Crossref]
  29. T.-T. Shih, P.-H. Tseng, Y.-Y. Lai, and W.-H. Cheng, “A 25 Gbit/s transmitter optical sub-assembly package employing cost-effective TO-CAN materials and processes,” J. Lightwave Technol. 30(6), 834–840 (2012).
    [Crossref]
  30. Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol. 31(1), 1079–1087 (2013).
    [Crossref]
  31. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
    [Crossref]
  32. H. Mogensen, Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).
  33. K. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
    [Crossref]
  34. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1997), Chap. 5.
  35. Y.-C. Li, Y.-C. Chi, M.-C. Cheng, I.-C. Lu, J. Chen, and G.-R. Lin, “Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF,” Opt. Express 21(14), 16722–16735 (2013).
    [Crossref] [PubMed]
  36. J. Lu, K. B. Letaief, J. C.-I. Chuang, and M. L. Liou, “M-PSK and M-QAM BER computation using signal-space concepts,” IEEE Trans. Commun. 47(2), 181–184 (1999).
    [Crossref]

2014 (1)

2013 (4)

2012 (6)

2011 (1)

2010 (2)

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol. 28(20), 2925–2932 (2010).
[Crossref]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

2009 (5)

2008 (2)

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
[Crossref]

2007 (2)

2006 (1)

2005 (1)

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

2003 (1)

K. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

2001 (1)

B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans. Microw. Theory Tech. 49(8), 1404–1409 (2001).
[Crossref]

2000 (1)

1999 (1)

J. Lu, K. B. Letaief, J. C.-I. Chuang, and M. L. Liou, “M-PSK and M-QAM BER computation using signal-space concepts,” IEEE Trans. Commun. 47(2), 181–184 (1999).
[Crossref]

1998 (1)

K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

1985 (1)

H. Mogensen, Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).

1982 (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

Armstrong, J.

Atsuki, K.

K. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Chae, C.-J.

Chang, G.-K.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Chen, H. Y.

H. Yeh, C. W. Chow, Y. F. Wu, and H. Y. Chen, “Demonstrations of 10 and 40Gbps upstream transmissions using 1.2 GHz RSOA-based ONU in long-reach access networks,” Opt. Fiber Technol. 18(2), 63–67 (2012).
[Crossref]

Chen, H.-Y.

I.-C. Lu, C.-C. Wei, W.-J. Jiang, H.-Y. Chen, Y.-C. Chi, Y.-C. Li, D.-Z. Hsu, G.-R. Lin, and J. Chen, “20-Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” Opt. Express 21(7), 8622–8629 (2013).
[Crossref] [PubMed]

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection locked Fabry–Perot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. J. 5(3), 7901208 (2013).
[Crossref]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry-Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett. 48(15), 940–942 (2012).
[Crossref]

Chen, J.

Chen, L.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Chen, Y.-J.

Cheng, M.-C.

Cheng, T.-K.

Cheng, W.-H.

Cheng, X.-F.

Chi, S.

W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[Crossref]

Chi, Y.-C.

M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22(13), 15724–15736 (2014).
[Crossref] [PubMed]

I.-C. Lu, C.-C. Wei, W.-J. Jiang, H.-Y. Chen, Y.-C. Chi, Y.-C. Li, D.-Z. Hsu, G.-R. Lin, and J. Chen, “20-Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” Opt. Express 21(7), 8622–8629 (2013).
[Crossref] [PubMed]

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol. 31(1), 1079–1087 (2013).
[Crossref]

Y.-C. Li, Y.-C. Chi, M.-C. Cheng, I.-C. Lu, J. Chen, and G.-R. Lin, “Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF,” Opt. Express 21(14), 16722–16735 (2013).
[Crossref] [PubMed]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
[Crossref] [PubMed]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol. 28(20), 2925–2932 (2010).
[Crossref]

G.-R. Lin, T.-K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express 17(20), 17739–17746 (2009).
[Crossref] [PubMed]

Cho, S. H.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Chow, C. W.

H. Yeh, C. W. Chow, Y. F. Wu, and H. Y. Chen, “Demonstrations of 10 and 40Gbps upstream transmissions using 1.2 GHz RSOA-based ONU in long-reach access networks,” Opt. Fiber Technol. 18(2), 63–67 (2012).
[Crossref]

Chow, C.-W.

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection locked Fabry–Perot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. J. 5(3), 7901208 (2013).
[Crossref]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry-Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett. 48(15), 940–942 (2012).
[Crossref]

Chow, W.

W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[Crossref]

Chuang, J. C.-I.

J. Lu, K. B. Letaief, J. C.-I. Chuang, and M. L. Liou, “M-PSK and M-QAM BER computation using signal-space concepts,” IEEE Trans. Commun. 47(2), 181–184 (1999).
[Crossref]

Chung, Y. C.

K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Cvijetic, N.

Dixon, B. J.

B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans. Microw. Theory Tech. 49(8), 1404–1409 (2001).
[Crossref]

Du, L. B. Y.

Giddings, R. P.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

Hsu, D.-Z.

Huang, M.-F.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Huang, Y.-H.

Hugues-Salas, E.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

Iezekiel, S.

B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans. Microw. Theory Tech. 49(8), 1404–1409 (2001).
[Crossref]

Jacobsen, G.

H. Mogensen, Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).

Jeong, G.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Jiang, W.-J.

Jin, X. Q.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

Jou, J.-J.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
[Crossref]

Jung, K.

K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Kawashima, K.

K. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Keiser, G.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
[Crossref]

Kim, B. W.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Kim, C.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Kim, H.

Kuo, H.-C.

Lai, Y.-Y.

Lane, P. M.

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

Lee, C.-H.

K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Lee, J.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Lee, S.-L.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
[Crossref]

Lee, W. R.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Letaief, K. B.

J. Lu, K. B. Letaief, J. C.-I. Chuang, and M. L. Liou, “M-PSK and M-QAM BER computation using signal-space concepts,” IEEE Trans. Commun. 47(2), 181–184 (1999).
[Crossref]

Li, Y.-C.

Liao, Y.-S.

Lin, G.-C.

Lin, G.-R.

M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22(13), 15724–15736 (2014).
[Crossref] [PubMed]

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol. 31(1), 1079–1087 (2013).
[Crossref]

I.-C. Lu, C.-C. Wei, W.-J. Jiang, H.-Y. Chen, Y.-C. Chi, Y.-C. Li, D.-Z. Hsu, G.-R. Lin, and J. Chen, “20-Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” Opt. Express 21(7), 8622–8629 (2013).
[Crossref] [PubMed]

Y.-C. Li, Y.-C. Chi, M.-C. Cheng, I.-C. Lu, J. Chen, and G.-R. Lin, “Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF,” Opt. Express 21(14), 16722–16735 (2013).
[Crossref] [PubMed]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
[Crossref] [PubMed]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol. 28(20), 2925–2932 (2010).
[Crossref]

Y.-S. Liao, H.-C. Kuo, Y.-J. Chen, and G.-R. Lin, “Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet,” Opt. Express 17(6), 4859–4867 (2009).
[Crossref] [PubMed]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol. 27(14), 2779–2785 (2009).
[Crossref]

G.-R. Lin, T.-K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express 17(20), 17739–17746 (2009).
[Crossref] [PubMed]

Lin, S.-C.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
[Crossref]

Lin, W.-Y.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
[Crossref]

Lin, Y.-H.

Liou, M. L.

J. Lu, K. B. Letaief, J. C.-I. Chuang, and M. L. Liou, “M-PSK and M-QAM BER computation using signal-space concepts,” IEEE Trans. Commun. 47(2), 181–184 (1999).
[Crossref]

Liu, C.-K.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
[Crossref]

Liu, Y.-L.

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection locked Fabry–Perot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. J. 5(3), 7901208 (2013).
[Crossref]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry-Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett. 48(15), 940–942 (2012).
[Crossref]

Lowery, J.

Lu, C.

Lu, H.-H.

Lu, I.-C.

Lu, J.

J. Lu, K. B. Letaief, J. C.-I. Chuang, and M. L. Liou, “M-PSK and M-QAM BER computation using signal-space concepts,” IEEE Trans. Commun. 47(2), 181–184 (1999).
[Crossref]

Maier, G.

Martinelli, M.

Mogensen, H.

H. Mogensen, Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).

Murakami, K.

K. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Olesen,

H. Mogensen, Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).

Park, M. Y.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

Pattavina, A.

Peng, P.-C.

Pollard, R. D.

B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans. Microw. Theory Tech. 49(8), 1404–1409 (2001).
[Crossref]

Qian, D.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Salvadori, E.

Shankar, J.

Shih, C.-W.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
[Crossref]

Shih, F. Y.

W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[Crossref]

Shih, T.-T.

Shin, S. K.

K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

Shore, K. A.

Sung, J.-Y.

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection locked Fabry–Perot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. J. 5(3), 7901208 (2013).
[Crossref]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry-Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett. 48(15), 940–942 (2012).
[Crossref]

Tang, J. M.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
[Crossref]

Tsai, C.-T.

Tseng, C.-L.

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
[Crossref]

Tseng, P.-H.

Wang, C. H.

W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[Crossref]

Wang, H.-L.

Wang, H.-Y.

Wang, Y.

Wei, C.-C.

Wei, J. L.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

Wen, Y.-J.

Wu, Y. F.

H. Yeh, C. W. Chow, Y. F. Wu, and H. Y. Chen, “Demonstrations of 10 and 40Gbps upstream transmissions using 1.2 GHz RSOA-based ONU in long-reach access networks,” Opt. Fiber Technol. 18(2), 63–67 (2012).
[Crossref]

Xiong, W.-D.

Xu, Z.

Yeh, C. H.

W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[Crossref]

Yeh, C.-H.

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection locked Fabry–Perot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. J. 5(3), 7901208 (2013).
[Crossref]

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry-Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett. 48(15), 940–942 (2012).
[Crossref]

Yeh, H.

H. Yeh, C. W. Chow, Y. F. Wu, and H. Y. Chen, “Demonstrations of 10 and 40Gbps upstream transmissions using 1.2 GHz RSOA-based ONU in long-reach access networks,” Opt. Fiber Technol. 18(2), 63–67 (2012).
[Crossref]

Yu, J.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

Zhong, W.-D.

Electron. Lett. (1)

C.-H. Yeh, C.-W. Chow, H.-Y. Chen, J.-Y. Sung, and Y.-L. Liu, “Demonstration of using injection-locked Fabry-Perot laser diode for 10 Gbit/s 16-QAM OFDM WDM-PON,” Electron. Lett. 48(15), 940–942 (2012).
[Crossref]

IEEE J. Quantum Electron. (3)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

H. Mogensen, Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).

K. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

IEEE Photon. J. (1)

H.-Y. Chen, C.-H. Yeh, C.-W. Chow, J.-Y. Sung, Y.-L. Liu, and J. Chen, “Investigation of using injection locked Fabry–Perot laser diode with 10% front-facet reflectivity for short-reach to long-reach upstream PON access,” IEEE Photon. J. 5(3), 7901208 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (6)

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[Crossref]

W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[Crossref]

K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, “Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques,” IEEE Photon. Technol. Lett. 10(9), 1334–1336 (1998).
[Crossref]

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[Crossref]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gbit/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[Crossref]

C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, and G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Pérot laser diodes for WDM access networks,” IEEE Photon. Technol. Lett. 20(10), 794–796 (2008).
[Crossref]

IEEE Trans. Commun. (1)

J. Lu, K. B. Letaief, J. C.-I. Chuang, and M. L. Liou, “M-PSK and M-QAM BER computation using signal-space concepts,” IEEE Trans. Commun. 47(2), 181–184 (1999).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

B. J. Dixon, R. D. Pollard, and S. Iezekiel, “Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds,” IEEE Trans. Microw. Theory Tech. 49(8), 1404–1409 (2001).
[Crossref]

J. Lightwave Technol. (11)

J. Lowery, L. B. Y. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25(1), 131–138 (2007).
[Crossref]

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[Crossref]

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
[Crossref]

J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
[Crossref]

G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry–Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol. 27(14), 2779–2785 (2009).
[Crossref]

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 18(2), 125–143 (2000).
[Crossref]

G.-R. Lin, Y.-S. Liao, Y.-C. Chi, H.-C. Kuo, G.-C. Lin, H.-L. Wang, and Y.-J. Chen, “Long-cavity Fabry–Perot laser amplifier transmitter with enhanced injection-locking bandwidth for WDM-PON application,” J. Lightwave Technol. 28(20), 2925–2932 (2010).
[Crossref]

W.-D. Xiong, W.-D. Zhong, and H. Kim, “A broadcast-capable WDM-PON based on polarization-sensitive Weak-resonant-cavity Fabry–Perot laser diodes,” J. Lightwave Technol. 30(3), 355–361 (2012).
[Crossref]

T.-T. Shih, P.-H. Tseng, Y.-Y. Lai, and W.-H. Cheng, “Compact TO-CAN header with bandwidth excess 40 GHz,” J. Lightwave Technol. 29(17), 2538–2544 (2011).
[Crossref]

T.-T. Shih, P.-H. Tseng, Y.-Y. Lai, and W.-H. Cheng, “A 25 Gbit/s transmitter optical sub-assembly package employing cost-effective TO-CAN materials and processes,” J. Lightwave Technol. 30(6), 834–840 (2012).
[Crossref]

Y.-C. Chi, Y.-C. Li, and G.-R. Lin, “Specific jacket SMA-Connected TO-Can package FPLD transmitter with direct modulation bandwidth beyond 6 GHz for 256-QAM single or multi subcarrier OOFDM up to 15 Gbit/s,” J. Lightwave Technol. 31(1), 1079–1087 (2013).
[Crossref]

Opt. Express (7)

Z. Xu, Y.-J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Pérot laser diodes,” Opt. Express 15(6), 2953–2962 (2007).
[Crossref] [PubMed]

Y.-C. Li, Y.-C. Chi, M.-C. Cheng, I.-C. Lu, J. Chen, and G.-R. Lin, “Coherently wavelength injection-locking a 600-μm long cavity colorless laser diode for 16-QAM OFDM at 12 Gbit/s over 25-km SMF,” Opt. Express 21(14), 16722–16735 (2013).
[Crossref] [PubMed]

I.-C. Lu, C.-C. Wei, W.-J. Jiang, H.-Y. Chen, Y.-C. Chi, Y.-C. Li, D.-Z. Hsu, G.-R. Lin, and J. Chen, “20-Gbps WDM-PON transmissions employing weak-resonant-cavity FPLD with OFDM and SC-FDE modulation formats,” Opt. Express 21(7), 8622–8629 (2013).
[Crossref] [PubMed]

M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22(13), 15724–15736 (2014).
[Crossref] [PubMed]

Y.-S. Liao, H.-C. Kuo, Y.-J. Chen, and G.-R. Lin, “Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet,” Opt. Express 17(6), 4859–4867 (2009).
[Crossref] [PubMed]

G.-R. Lin, T.-K. Cheng, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express 17(20), 17739–17746 (2009).
[Crossref] [PubMed]

Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20(18), 20071–20077 (2012).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

H. Yeh, C. W. Chow, Y. F. Wu, and H. Y. Chen, “Demonstrations of 10 and 40Gbps upstream transmissions using 1.2 GHz RSOA-based ONU in long-reach access networks,” Opt. Fiber Technol. 18(2), 63–67 (2012).
[Crossref]

Other (4)

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture” in European Conference on Optical Communication (ECOC), (Institution of Engineering and Technology, Brussels, Belgium,) pp. 39–49.
[Crossref]

T. Tanaka, M. Nishihara, T. Takahara, L. Li, Z. Tao, and J. C. Rasmussen, “50 Gbps Class Transmission in Single Mode Fiber using Discrete Multi-tone Modulation with 10G Directly Modulated Laser,” in Optical Fiber Communication / National Fiber Optic Engineers Conference (OFC/NFOEC), (Optical Society of America, Los Angeles, California, 2012) Paper OTh4G.3.
[Crossref]

Z. Xu, Y. Yeo, X. Cheng, and E. Kurniawan, “20-Gb/s injection locked FP-LD in a wavelength-divisionmultiplexing OFDM-PON,” in Proc. Optical Fiber Communication Conference (2012), Los Angeles, USA, Paper OW4B.3.
[Crossref]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1997), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The pictures and illustrations of the 10-GHz TO-56-can packaged WRC-FPLD.
Fig. 2
Fig. 2 The 10-GHz TO-56-can/jacket-SMA packaged WRC-FPLD with the self-designed temperature control system.
Fig. 3
Fig. 3 The testing bench of the injection-locked WRC-FPLD for transmitting the QAM OFDM data delivered by the AWG (a) without and (b) with pre-amplifier. AWG: arbitrary waveform generator, DSO: digital signal oscilloscope, SMF: single mode fiber. PD: photodetector, Amp: amplifier, TL: tunable laser.
Fig. 4
Fig. 4 (a) The frequency response of the WRC-FPLD with low-speed TO-can package (black dashed line) and 10 GHz TO-can package (red solid line). Inset: The RF spectrum of the 16-QAM OFDM data with various bandwidth carried by the WRC-FPLD, and (b) the simulated frequency responses of the WRC-FPLD obtained at different injection powers.
Fig. 5
Fig. 5 (a) The measured frequency responses of the injection-locked WRC-FPLD with 4-GHz and 10-GHz TO-can packages, and the RIN spectra of the 10-GHz TO-can packaged and injection-locked WRC-FPLD at different (b) injection powers and (c) bias currents.
Fig. 6
Fig. 6 (b) The constellation plots of the 16-QAM OFDM data received at free-running and injection-locking cases and (a) the BERs of the 16-QAM OFDM data at raw data rate of 20-36 Gbit/s transmitted by the WRC-FPLD at different injection-locking powers.
Fig. 7
Fig. 7 The measured frequency response, RIN and SNR behaviors for 20-Gbit/s (upper) and 36-Gbit/s (lower) transmissions with injection powers ranged from −12 to −3 dBm (left) and from −3 to 3 dBm (right).
Fig. 8
Fig. 8 The 3D contour of the received BER for (a) 32 Gbit/s and (b) 36 Gbit/s 16-QAM OFDM transmissions at different bias currents and injection powers.
Fig. 9
Fig. 9 (a) BER vs. receiving power of the injection-locked WRC-FPLD output under back-to-back transmission and (b) the BER vs. raw data rate of the 16-QAM OFDM data after back-to-back and 25-km transmissions.
Fig. 10
Fig. 10 Upper: the (i) original and (ii) pre-amplified 16-QAM OFDM based direct modulation setup for the colorless WRC-FPLD. Lower: the BER of the 16-QAM OFDM data with and without pre-amplification carried by the injection-locked WRC-FPLD vs. receiving power after back-to-back and 25-km transmissions.
Fig. 11
Fig. 11 The 3D contour of the received BER for 36 Gbit/s 16-QAM OFDM transmission without and with pre-amplification.
Fig. 12
Fig. 12 (a) BER performance of the pre-amplified 16-QAM OFDM data at 20-36 Gbit/s transmitted by the injection-locked WRC-FPLD and (b) the corresponding power penalty.
Fig. 13
Fig. 13 BER performance of the pre-amplified 64-QAM OFDM data with bandwidth ranged from 5 to 8 GHz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dN(t) dt = η i I(t) q N(t) τ s v g gS(t), dϕ(t) dt = 1 2 αΓ v g gκ ( S inj S(t) ) 1/2 sin(Δϕ(t))Δ w inj , dS(t) dt =Γ v g gS(t) S(t) τ p +2κ ( S inj S(t) ) 1/2 cos(Δϕ(t)),
ϕ B = sin 1 ( Δ ω inj κ 1+ α 2 S B S inj ) tan 1 α= tan 1 α cos( ϕ B )= 1 1 α 2
jωn(ω)= η i i(ω) q n(ω) τ s v g [ g B s(ω)+g' S B n(ω)+g'n(ω)s(ω) ], jωs(ω)=Γ v g [ g B s(ω)+g' S B n(ω)+g'n(ω)s(ω) ] s(ω) τ p + κ 1+ α 2 S inj S B [ s(ω) S B ]),
H(ω)= s(ω) i(ω) = η i Γ v g g' S B qV { ω 2 +jω( 1 τ s + v g g' S B κ 1+ α 2 S inj S B )+[ v g g' S B τ p κ 1+ α 2 S inj S B ( 1 τ s + v g g' S B ) ] } ,
RIN= 16 (Δν) ST { η i Γ v g g' q ( I B I th ' )+ κ 1+ α 2 S inj S B [ η i Γ v g g' τ p q ( I B I th ' )+ 1 τ s ] } 2 τ ΔN 2 + 2hC λ P 0 [ η 0 ( I B + I th ' ) ( I B I th ' ) +(1 η 0 ) ],
BER= 2(1 1 M ){ erfc[ 3SNR 2(M1) ]+erfc[ 3 3SNR 2(M1) ] } log 2 M ,

Metrics