Abstract

Ultrafast fiber lasers play a significant role in our society with many aspects ranging from fundamental physics to industrial purposes. Searching for high-performance saturable absorbers (SAs) is vital to the developments of ultrafast fiber lasers. Gold nanorods (GNRs) have been discovered to possess saturable absorption effect. However, a major obstacle to make the GNRs as high-performance and practical SA is the low optical damage threshold. To overcome this drawback, herein we proposed the nanocomposites with gold nanorods/silica core-shell structure (GNRs@SiO2) as a high-performance SA for ultrashort pulse generation in a fiber laser. The GNRs@SiO2 SA presents a modulation depth of 4.2% and nonsaturable loss of 45.6%. With the proposed GNRs@SiO2 SA, 379 fs pulse was directly obtained from the fiber laser. The achieved results demonstrated that the GNR@SiO2 could be indeed a good candidate of high-performance SA towards practical applications in the field of ultrafast photonics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microfiber coated with gold nanorods as saturable absorbers for 2 μm femtosecond fiber lasers

Zhe Kang, Mingyi Liu, Chengyuan Tang, Xiaolu Xu, Zhixu Jia, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 8(12) 3841-3850 (2018)

Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm

Hongyu Luo, Zhe Kang, Ying Gao, Hanlin Peng, Jianfeng Li, Guanshi Qin, and Yong Liu
Opt. Express 27(4) 4886-4896 (2019)

Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber

Zhe Kang, Xuejian Gao, Lei Zhang, Yan Feng, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 5(4) 794-801 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
    [Crossref] [PubMed]
  2. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
    [Crossref] [PubMed]
  3. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  4. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
    [Crossref] [PubMed]
  5. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
    [Crossref] [PubMed]
  6. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
    [Crossref] [PubMed]
  7. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
    [Crossref] [PubMed]
  8. M. Pelton, M. Z. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation,” Phys. Rev. B 73(15), 155419 (2006).
    [Crossref]
  9. H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
    [Crossref] [PubMed]
  10. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
    [Crossref] [PubMed]
  11. X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
    [Crossref] [PubMed]
  12. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  13. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
    [Crossref]
  14. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  15. H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
    [Crossref] [PubMed]
  16. A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser [Invited],” Photon. Res. 3(2), A69–A78 (2015).
    [Crossref]
  17. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
    [Crossref]
  18. Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
    [Crossref]
  19. G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: grapheme and topological insulators [Invited],” Photon. Res. 3(2), A56–A63 (2015).
    [Crossref]
  20. Z. Q. Luo, Y. Y. Li, M. Zhong, Y. Z. Huang, X. J. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser [Invited],” Photon. Res. 3(3), A79–A86 (2015).
    [Crossref]
  21. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  22. D. Mao, X. Liu, and H. Lu, “Observation of pulse trapping in a near-zero dispersion regime,” Opt. Lett. 37(13), 2619–2621 (2012).
    [Crossref] [PubMed]
  23. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
    [Crossref]
  24. Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
    [Crossref]
  25. Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
    [Crossref]
  26. X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
    [Crossref]
  27. Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
    [Crossref] [PubMed]
  28. I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
    [Crossref] [PubMed]
  29. Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
    [Crossref] [PubMed]
  30. Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
    [Crossref] [PubMed]
  31. H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17(25), 6447–6451 (2005).
    [Crossref]
  32. C. G. Wang, Z. F. Ma, T. T. Wang, and Z. M. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
    [Crossref]
  33. A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
    [Crossref] [PubMed]
  34. H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, Z. C. Luo, W. C. Xu, H. Zhang, C. J. Zhao, and S. C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014).
    [Crossref] [PubMed]
  35. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
    [Crossref] [PubMed]
  36. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
    [Crossref]
  37. Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
    [Crossref]
  38. D. Li, H. Jussila, L. Karvonen, G. J. Ye, H. Lipsanen, X. H. Chen, and Z. P. Sun, “Ultrafast pulse generation with black phosphorus,” http://arxiv.org/abs/1505.00480 , accessed 3/5/15.
  39. K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS₂ as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
    [Crossref] [PubMed]
  40. R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited],” Photon. Res. 3(2), A30–A42 (2015).
    [Crossref]
  41. A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Deliv. Rev. 64(2), 190–199 (2012).
    [Crossref] [PubMed]
  42. R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
    [Crossref] [PubMed]
  43. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  44. K. Dick, T. Dhanasekaran, Z. Zhang, and D. Meisel, “Size-dependent melting of silica-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 124(10), 2312–2317 (2002).
    [Crossref] [PubMed]

2015 (8)

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher, “Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited],” Photon. Res. 3(2), A30–A42 (2015).
[Crossref]

G. Sobon, “Mode-locking of fiber lasers using novel two-dimensional nanomaterials: grapheme and topological insulators [Invited],” Photon. Res. 3(2), A56–A63 (2015).
[Crossref]

A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser [Invited],” Photon. Res. 3(2), A69–A78 (2015).
[Crossref]

Z. Q. Luo, Y. Y. Li, M. Zhong, Y. Z. Huang, X. J. Wan, J. Peng, and J. Weng, “Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser [Invited],” Photon. Res. 3(3), A79–A86 (2015).
[Crossref]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS₂ as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref]

2014 (5)

2013 (3)

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
[Crossref] [PubMed]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

2012 (4)

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

D. Mao, X. Liu, and H. Lu, “Observation of pulse trapping in a near-zero dispersion regime,” Opt. Lett. 37(13), 2619–2621 (2012).
[Crossref] [PubMed]

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Deliv. Rev. 64(2), 190–199 (2012).
[Crossref] [PubMed]

2011 (1)

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

2010 (3)

Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

2009 (3)

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

2008 (4)

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref] [PubMed]

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[Crossref] [PubMed]

2006 (4)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

M. Pelton, M. Z. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation,” Phys. Rev. B 73(15), 155419 (2006).
[Crossref]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

C. G. Wang, Z. F. Ma, T. T. Wang, and Z. M. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[Crossref]

2005 (3)

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17(25), 6447–6451 (2005).
[Crossref]

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[Crossref] [PubMed]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2002 (2)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

K. Dick, T. Dhanasekaran, Z. Zhang, and D. Meisel, “Size-dependent melting of silica-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 124(10), 2312–2317 (2002).
[Crossref] [PubMed]

1992 (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

Aboody, K. S.

R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
[Crossref] [PubMed]

Alkilany, A. M.

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Deliv. Rev. 64(2), 190–199 (2012).
[Crossref] [PubMed]

Annala, A. J.

R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
[Crossref] [PubMed]

Bao, Q. L.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Berlin, J. M.

R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
[Crossref] [PubMed]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Boulos, S. P.

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Deliv. Rev. 64(2), 190–199 (2012).
[Crossref] [PubMed]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Brioude, A.

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

Caglayan, H.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Chen, H.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Chen, J.

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS₂ as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref] [PubMed]

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Chen, Y.

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Chen, Y. S.

Cheng, C. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Chi, Y. C.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Chu, H. C.

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17(25), 6447–6451 (2005).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Dhanasekaran, T.

K. Dick, T. Dhanasekaran, Z. Zhang, and D. Meisel, “Size-dependent melting of silica-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 124(10), 2312–2317 (2002).
[Crossref] [PubMed]

Dick, K.

K. Dick, T. Dhanasekaran, Z. Zhang, and D. Meisel, “Size-dependent melting of silica-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 124(10), 2312–2317 (2002).
[Crossref] [PubMed]

Doan-Nguyen, V.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Du, J.

Elim, H. I.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

el-Sayed, M. A.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Emelianov, S.

Engheta, N.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Eustis, S.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Feldmann, J.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Feng, Y.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Frey, W.

Gao, J.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[Crossref] [PubMed]

Gao, X. J.

Garcia, E.

R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
[Crossref] [PubMed]

Gole, A. M.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[Crossref] [PubMed]

Gorelikov, I.

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

Gou, L.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[Crossref] [PubMed]

Grzelczak, M.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[Crossref] [PubMed]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Guo, Z. N.

Guyot-Sionnest, P.

M. Pelton, M. Z. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation,” Phys. Rev. B 73(15), 155419 (2006).
[Crossref]

Hao, F.

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Hasan, T.

He, J. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Homan, K.

Honda, K.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref] [PubMed]

Horiguchi, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref] [PubMed]

Howe, R. C. T.

Hu, G.

Huang, M. H.

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17(25), 6447–6451 (2005).
[Crossref]

Huang, Y.

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Huang, Y. Z.

Hunyadi, S. E.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[Crossref] [PubMed]

Jäckel, F.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Ji, W.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Jia, Z. X.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Jiang, X. C.

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

Jiang, X. F.

Jin, L.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Kagan, C. R.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Kang, Y.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Kang, Z.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Kato, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref] [PubMed]

Kelleher, E. J. R.

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

Kim, S.

Kim, S. U.

R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
[Crossref] [PubMed]

Klar, T. A.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Kruizinga, P.

Kuo, C. L.

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17(25), 6447–6451 (2005).
[Crossref]

Kuo, T. J.

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17(25), 6447–6451 (2005).
[Crossref]

Lee, C. K.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Lee, J. Y.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Li, Q.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Li, T.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[Crossref] [PubMed]

Li, X.

Li, Y. Y.

Lin, G. R.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Lin, S. F.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Lin, Y. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Liu, H.

Liu, L.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Liu, M.

Liu, M. Z.

M. Pelton, M. Z. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation,” Phys. Rev. B 73(15), 155419 (2006).
[Crossref]

Liu, X.

Liz-Marzán, L. M.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[Crossref] [PubMed]

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Lu, H.

Lu, S. B.

Luo, A. P.

Luo, Z. C.

Luo, Z. Q.

Ma, Z. F.

C. G. Wang, Z. F. Ma, T. T. Wang, and Z. M. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[Crossref]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Mao, D.

Matsuura, N.

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

Meisel, D.

K. Dick, T. Dhanasekaran, Z. Zhang, and D. Meisel, “Size-dependent melting of silica-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 124(10), 2312–2317 (2002).
[Crossref] [PubMed]

Mi, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Ming, T.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Mooney, R.

R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
[Crossref] [PubMed]

Mulvaney, P.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[Crossref] [PubMed]

Murphy, C. J.

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Deliv. Rev. 64(2), 190–199 (2012).
[Crossref] [PubMed]

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[Crossref] [PubMed]

Murray, C. B.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Nakashima, N.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref] [PubMed]

Niidome, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref] [PubMed]

Ning, Q. Y.

Nordlander, P.

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Orendorff, C. J.

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[Crossref] [PubMed]

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Park, S.

M. Pelton, M. Z. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation,” Phys. Rev. B 73(15), 155419 (2006).
[Crossref]

Pelton, M.

M. Pelton, M. Z. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation,” Phys. Rev. B 73(15), 155419 (2006).
[Crossref]

Peng, J.

Pérez-Juste, J.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[Crossref] [PubMed]

Pileni, M. P.

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Qi, X.

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Qin, G. S.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Qin, W. P.

Qin, W. Q.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Rogach, A. L.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Roma, L.

R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
[Crossref] [PubMed]

Sau, T. K.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Scherer, N. F.

M. Pelton, M. Z. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation,” Phys. Rev. B 73(15), 155419 (2006).
[Crossref]

Shao, L.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Sisco, P. N.

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Deliv. Rev. 64(2), 190–199 (2012).
[Crossref] [PubMed]

Sobon, G.

Sokolov, K.

Su, Z. M.

C. G. Wang, Z. F. Ma, T. T. Wang, and Z. M. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[Crossref]

Sun, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Tang, D. Y.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Tang, R.

Thompson, L. B.

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Deliv. Rev. 64(2), 190–199 (2012).
[Crossref] [PubMed]

Torrisi, F.

Tseng, W. H.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Van Haute, D.

R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
[Crossref] [PubMed]

Wan, X. J.

Wang, C. G.

C. G. Wang, Z. F. Ma, T. T. Wang, and Z. M. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, F. Z.

Wang, J.

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS₂ as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref] [PubMed]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Wang, T. T.

C. G. Wang, Z. F. Ma, T. T. Wang, and Z. M. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[Crossref]

Wang, W.

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Wang, X. D.

A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser [Invited],” Photon. Res. 3(2), A69–A78 (2015).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

Wang, Z. T.

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Wei, H.

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Wen, S. C.

Weng, J.

Woodward, R. I.

Wu, C. I.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Wu, C. L.

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Wu, H. Y.

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17(25), 6447–6451 (2005).
[Crossref]

Wu, K.

Xing, G.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Xu, H.

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

Xu, W. C.

Xu, Y.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Yan, C.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yang, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Yang, Z.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Ye, X.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Yu, X. F.

Zhang, H.

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref]

H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, Z. C. Luo, W. C. Xu, H. Zhang, C. J. Zhao, and S. C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS2 saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
[Crossref] [PubMed]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhang, L.

Z. Kang, X. J. Gao, L. Zhang, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locked fiber lasers at 1039 and 1560 nm based on a common gold nanorod saturable absorber,” Opt. Mater. Express 5(4), 794–801 (2015).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhang, M.

Zhang, X.

Zhang, Z.

K. Dick, T. Dhanasekaran, Z. Zhang, and D. Meisel, “Size-dependent melting of silica-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 124(10), 2312–2317 (2002).
[Crossref] [PubMed]

Zhao, C. J.

Zhao, D.

R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
[Crossref] [PubMed]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhao, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhao, L. M.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhao, N.

Zheng, C.

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Zheng, J.

Zheng, X. W.

Zhong, M.

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

ACS Nano (3)

X. Ye, L. Jin, H. Caglayan, J. Chen, G. Xing, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C. R. Kagan, and C. B. Murray, “Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives,” ACS Nano 6(3), 2804–2817 (2012).
[Crossref] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

R. Mooney, L. Roma, D. Zhao, D. Van Haute, E. Garcia, S. U. Kim, A. J. Annala, K. S. Aboody, and J. M. Berlin, “Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy,” ACS Nano 8(12), 12450–12460 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photonics 2(4), 481–490 (2015).
[Crossref]

Adv. Drug Deliv. Rev. (1)

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Deliv. Rev. 64(2), 190–199 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

C. G. Wang, Z. F. Ma, T. T. Wang, and Z. M. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[Crossref]

Adv. Mater. (1)

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. Q. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

X. D. Wang, Z. C. Luo, H. Liu, M. Liu, A. P. Luo, and W. C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105(16), 161107 (2014).
[Crossref]

C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. T. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Chem. Mater. (1)

H. Y. Wu, H. C. Chu, T. J. Kuo, C. L. Kuo, and M. H. Huang, “Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid,” Chem. Mater. 17(25), 6447–6451 (2005).
[Crossref]

Chem. Soc. Rev. (3)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[Crossref] [PubMed]

Electron. Lett. (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

J. Am. Chem. Soc. (1)

K. Dick, T. Dhanasekaran, Z. Zhang, and D. Meisel, “Size-dependent melting of silica-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 124(10), 2312–2317 (2002).
[Crossref] [PubMed]

J. Phys. Chem. B (3)

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Langmuir (1)

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref] [PubMed]

Nano Lett. (4)

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, “Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8(8), 2497–2502 (2008).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Nature (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (1)

Photon. Res. (4)

Phys. Rev. B (1)

M. Pelton, M. Z. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation,” Phys. Rev. B 73(15), 155419 (2006).
[Crossref]

Science (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[Crossref] [PubMed]

Other (1)

D. Li, H. Jussila, L. Karvonen, G. J. Ye, H. Lipsanen, X. H. Chen, and Z. P. Sun, “Ultrafast pulse generation with black phosphorus,” http://arxiv.org/abs/1505.00480 , accessed 3/5/15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) TEM image of GNRs. (b) Aqueous solution of GNRs. (c) Histogram of aspect ratio distribution. (d) TEM image of GNRs@SiO2.
Fig. 2
Fig. 2 (a) Photograph of filmy PVA-based GNRs@SiO2. (b) Image of the fiber-compatible GNRs@SiO2 SA.
Fig. 3
Fig. 3 (a) UV-vis-NIR absorption spectra of the GNRs film and GNRs@SiO2 film. (b) Nonlinear saturable absorption curve of PVA-based GNRs@SiO2. (c) Polarization-dependent loss of the fabricated GNRs@SiO2 film.
Fig. 4
Fig. 4 Schematic of proposed EDF laser with a PVA based GNRs@SiO2 SA.
Fig. 5
Fig. 5 Characterization of mode-locked operation. (a) Optical spectrum. (b) Stable pulse-train. (c) Corresponding autocorrelation trace (Inset: autocorrelation trace in a large time scale).
Fig. 6
Fig. 6 Stability of mode-locked operation. (a) RF spectrum. (b) Repeatedly scanned output spectrum at a 30-minutes interval.

Metrics