Abstract

We report on the fabrication and characterization of an elliptical hollow fiber inner coated with a silver layer and a dielectric layer for polarization maintaining and low loss transmission of terahertz (THz) radiation. The primary purpose of adding the dielectric layer is to prevent the silver layer from oxidation. The thickness of the dielectric layer is non-uniform owing to the surface tension of the coating, which was initially applied as a liquid. Transmission loss and polarization maintenance are experimentally characterized. Effects of the dielectric layer on transmission properties are analyzed by comparing the fiber to Ag-only fiber. Results show that a dielectric layer with thickness less than λ/10 can effectively decreases the power distributed on the metal surface and thus can practically reduce loss resulting from roughness of the silver layer. Bending effects on transmission loss and polarization maintenance are also investigated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency

Xiao-Li Tang, Bang-Shan Sun, and Yi-Wei Shi
Opt. Express 19(25) 24967-24979 (2011)

Characterization of cylindrical terahertz metallic hollow waveguide with multiple dielectric layers

Bang-Shan Sun, Xiao-Li Tang, Xuan Zeng, and Yi-Wei Shi
Appl. Opt. 51(30) 7276-7285 (2012)

Infrared transmissive, hollow plastic waveguides with inner Ag–AgI coatings

Roshan George and James A. Harrington
Appl. Opt. 44(30) 6449-6455 (2005)

References

  • View by:
  • |
  • |
  • |

  1. I. A. Tishchenko and A. I. Nosich, “Early quasioptics of near-millimeter and submillimeter waves in IRE-Kharkov Ukraine: From ideas to the microwave pioneer award,” IEEE Microw. Mag. 4(4), 32–44 (2003).
    [Crossref]
  2. E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  3. E. Garmire, T. Mcmahon, and M. Bass, “Flexible infrared-transmissive metal waveguides,” Appl. Phys. Lett. 29(4), 254–256 (1976).
    [Crossref]
  4. A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, and T. Hashimoto, “Transmission of kilowatt-class CO(2) laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31(24), 5114–5120 (1992).
    [Crossref] [PubMed]
  5. A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395(6), 1661–1671 (2009).
    [Crossref] [PubMed]
  6. Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30(21), 2942–2944 (2005).
    [Crossref] [PubMed]
  7. S. Kino and Y. Matsuura, “Nontoxic and chemically stable hollow optical fiber probe for fourier transform infrared spectroscopy,” Appl. Spectrosc. 61(12), 1334–1337 (2007).
    [Crossref] [PubMed]
  8. J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
    [Crossref] [PubMed]
  9. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
    [Crossref]
  10. M. Miyagi and S. Kawakami, “Design theory of dielectric coated circular metallic waveguides for infrared Transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
    [Crossref]
  11. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
    [Crossref] [PubMed]
  12. C. M. Bledt, J. E. Melzer, and J. A. Harrington, “Fabrication and characterization of improved Ag/PS hollow-glass waveguides for THz transmission,” Appl. Opt. 52(27), 6703–6709 (2013).
    [Crossref] [PubMed]
  13. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25(12), 1949–1954 (2008).
    [Crossref]
  14. M. Navarro-Cia, C. M. Bledt, M. S. Vitiello, H. E. Beere, D. A. Ritchie, J. A. Harrington, and O. Mitrofanov, “Modes in silver-iodide-lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy,” J. Opt. Soc. Am. B 30(1), 127–135 (2013).
    [Crossref]
  15. M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared, Millimeter, Terahertz Waves 36(6), 542–555 (2015).
    [Crossref]
  16. H. W. Liang, S. C. Ruan, M. Zhang, H. Su, and X. J. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum(Au)/polystyrene(PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
    [Crossref]
  17. B. S. Sun, X. L. Tang, X. Zeng, and Y. W. Shi, “Characterization of cylindrical terahertz metallic hollow waveguide with multiple dielectric layers,” Appl. Opt. 51(30), 7276–7285 (2012).
    [Crossref] [PubMed]
  18. C. M. Bledt, J. E. Melzer, and J. A. Harrington, “Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides,” Appl. Opt. 53(4), A70–A82 (2014).
    [Crossref] [PubMed]
  19. N. Llombart, A. Mazzinghi, P. H. Siegel, and A. Freni, “Design of a low loss metallo-dielectric EBG waveguide at submillimeter wavelengths,” IEEE Microwave Wireless Commun. 19(7), 437–439 (2009).
    [Crossref]
  20. B. M. A. Rahman, A. Quadir, H. Tanvir, and K. T. V. Grattan, “Characterization of plasmonic modes in a low-loss dielectric-coated hollow core rectangular waveguide at terahertz frequency,” IEEE Photonics J. 3(6), 1054–1066 (2011).
    [Crossref]
  21. X. L. Tang, B. S. Sun, and Y. W. Shi, “Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency,” Opt. Express 19(25), 24967–24979 (2011).
    [Crossref] [PubMed]
  22. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16(1), 7–12 (2008).
    [Crossref] [PubMed]
  23. S. P. Li, H. J. Liu, N. Huang, and Q. B. Sun, “Broadband high birefringence and low dispersion terahertz photonic crystal fiber,” J. Opt. 16, 105102 (2014).
  24. G. B. Ren, Y. D. Gong, P. Shum, X. Yu, and J. J. Hu, “Polarization maintaining air-core bandgap fibers for terahertz wave guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
    [Crossref]
  25. D. R. Chen and H. Y. Tam, “Highly birefringent terahertz fibers based on super-cell structure,” J. Lightwave Technol. 28(12), 1858–1863 (2010).
    [Crossref]
  26. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
    [Crossref] [PubMed]
  27. D. Chen, “Mode property of terahertz polymer tube,” J. Lightwave Technol. 28(18), 2708–2713 (2010).
    [Crossref]
  28. J. L. Wang, J. Q. Yao, H. M. Chen, and Z. Y. Li, “A simple birefringent terahertz waveguide based on polymer Elliptical Tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
    [Crossref]
  29. X. L. Tang, Y. Jiang, B. S. Sun, J. Chen, X. S. Zhu, P. Zhou, D. P. Wu, and Y. W. Shi, “Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission,” IEEE Photonics Technol. Lett. 25(4), 331–334 (2013).
    [Crossref]
  30. Z. Z. Yu, X. L. Tang, X. R. Wang, and Y. W. Shi, “Transmission characteristics of elliptical terahertz hollow fiber with dielectric and metallic inner coatings,” Acta Opt. Sin. 33(9), 0906009 (2013).
    [Crossref]
  31. Y. Kato and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microw. Theory Tech. 40(4), 679–685 (1992).
    [Crossref]
  32. Y. Kato and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microw. Theory Tech. 42(12), 2336–2342 (1994).
    [Crossref]
  33. A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47(18), 3254–3257 (2008).
    [Crossref] [PubMed]
  34. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical Properties of the Metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the Infrared and Far Infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref] [PubMed]
  35. S. R. Rengarajan and J. E. Lewis, “Dielectric loaded elliptical waveguides,” IEEE Trans. Microw. Theory Tech. 28(10), 1085–1089 (1980).
    [Crossref]
  36. X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
    [Crossref] [PubMed]
  37. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004), Chap. 7.

2015 (1)

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared, Millimeter, Terahertz Waves 36(6), 542–555 (2015).
[Crossref]

2014 (3)

H. W. Liang, S. C. Ruan, M. Zhang, H. Su, and X. J. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum(Au)/polystyrene(PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

C. M. Bledt, J. E. Melzer, and J. A. Harrington, “Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides,” Appl. Opt. 53(4), A70–A82 (2014).
[Crossref] [PubMed]

S. P. Li, H. J. Liu, N. Huang, and Q. B. Sun, “Broadband high birefringence and low dispersion terahertz photonic crystal fiber,” J. Opt. 16, 105102 (2014).

2013 (4)

X. L. Tang, Y. Jiang, B. S. Sun, J. Chen, X. S. Zhu, P. Zhou, D. P. Wu, and Y. W. Shi, “Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission,” IEEE Photonics Technol. Lett. 25(4), 331–334 (2013).
[Crossref]

Z. Z. Yu, X. L. Tang, X. R. Wang, and Y. W. Shi, “Transmission characteristics of elliptical terahertz hollow fiber with dielectric and metallic inner coatings,” Acta Opt. Sin. 33(9), 0906009 (2013).
[Crossref]

M. Navarro-Cia, C. M. Bledt, M. S. Vitiello, H. E. Beere, D. A. Ritchie, J. A. Harrington, and O. Mitrofanov, “Modes in silver-iodide-lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy,” J. Opt. Soc. Am. B 30(1), 127–135 (2013).
[Crossref]

C. M. Bledt, J. E. Melzer, and J. A. Harrington, “Fabrication and characterization of improved Ag/PS hollow-glass waveguides for THz transmission,” Appl. Opt. 52(27), 6703–6709 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

J. L. Wang, J. Q. Yao, H. M. Chen, and Z. Y. Li, “A simple birefringent terahertz waveguide based on polymer Elliptical Tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[Crossref]

B. M. A. Rahman, A. Quadir, H. Tanvir, and K. T. V. Grattan, “Characterization of plasmonic modes in a low-loss dielectric-coated hollow core rectangular waveguide at terahertz frequency,” IEEE Photonics J. 3(6), 1054–1066 (2011).
[Crossref]

X. L. Tang, B. S. Sun, and Y. W. Shi, “Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency,” Opt. Express 19(25), 24967–24979 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (5)

X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[Crossref] [PubMed]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
[Crossref] [PubMed]

G. B. Ren, Y. D. Gong, P. Shum, X. Yu, and J. J. Hu, “Polarization maintaining air-core bandgap fibers for terahertz wave guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[Crossref]

N. Llombart, A. Mazzinghi, P. H. Siegel, and A. Freni, “Design of a low loss metallo-dielectric EBG waveguide at submillimeter wavelengths,” IEEE Microwave Wireless Commun. 19(7), 437–439 (2009).
[Crossref]

A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395(6), 1661–1671 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (3)

2005 (1)

2004 (1)

2003 (1)

I. A. Tishchenko and A. I. Nosich, “Early quasioptics of near-millimeter and submillimeter waves in IRE-Kharkov Ukraine: From ideas to the microwave pioneer award,” IEEE Microw. Mag. 4(4), 32–44 (2003).
[Crossref]

1994 (1)

Y. Kato and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microw. Theory Tech. 42(12), 2336–2342 (1994).
[Crossref]

1992 (2)

Y. Kato and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microw. Theory Tech. 40(4), 679–685 (1992).
[Crossref]

A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, and T. Hashimoto, “Transmission of kilowatt-class CO(2) laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31(24), 5114–5120 (1992).
[Crossref] [PubMed]

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric coated circular metallic waveguides for infrared Transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[Crossref]

1983 (1)

1980 (1)

S. R. Rengarajan and J. E. Lewis, “Dielectric loaded elliptical waveguides,” IEEE Trans. Microw. Theory Tech. 28(10), 1085–1089 (1980).
[Crossref]

1976 (1)

E. Garmire, T. Mcmahon, and M. Bass, “Flexible infrared-transmissive metal waveguides,” Appl. Phys. Lett. 29(4), 254–256 (1976).
[Crossref]

1964 (1)

E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abbott, D.

Afshar V, S.

Alexander, R. W.

Atakaramians, S.

Bass, M.

E. Garmire, T. Mcmahon, and M. Bass, “Flexible infrared-transmissive metal waveguides,” Appl. Phys. Lett. 29(4), 254–256 (1976).
[Crossref]

Beere, H. E.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bledt, C. M.

Bowden, B.

Chen, D.

Chen, D. R.

Chen, H. M.

J. L. Wang, J. Q. Yao, H. M. Chen, and Z. Y. Li, “A simple birefringent terahertz waveguide based on polymer Elliptical Tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[Crossref]

Chen, J.

X. L. Tang, Y. Jiang, B. S. Sun, J. Chen, X. S. Zhu, P. Zhou, D. P. Wu, and Y. W. Shi, “Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission,” IEEE Photonics Technol. Lett. 25(4), 331–334 (2013).
[Crossref]

Cho, M.

Ebendorff-Heidepriem, H.

Fischer, B. M.

Freni, A.

N. Llombart, A. Mazzinghi, P. H. Siegel, and A. Freni, “Design of a low loss metallo-dielectric EBG waveguide at submillimeter wavelengths,” IEEE Microwave Wireless Commun. 19(7), 437–439 (2009).
[Crossref]

Gallot, G.

Garmire, E.

E. Garmire, T. Mcmahon, and M. Bass, “Flexible infrared-transmissive metal waveguides,” Appl. Phys. Lett. 29(4), 254–256 (1976).
[Crossref]

George, R.

Gong, Y. D.

G. B. Ren, Y. D. Gong, P. Shum, X. Yu, and J. J. Hu, “Polarization maintaining air-core bandgap fibers for terahertz wave guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[Crossref]

Grattan, K. T. V.

B. M. A. Rahman, A. Quadir, H. Tanvir, and K. T. V. Grattan, “Characterization of plasmonic modes in a low-loss dielectric-coated hollow core rectangular waveguide at terahertz frequency,” IEEE Photonics J. 3(6), 1054–1066 (2011).
[Crossref]

Han, H.

Han, Y.

Harrington, J.

Harrington, J. A.

Hashimoto, T.

Hongo, A.

Hu, J. J.

G. B. Ren, Y. D. Gong, P. Shum, X. Yu, and J. J. Hu, “Polarization maintaining air-core bandgap fibers for terahertz wave guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[Crossref]

Huang, N.

S. P. Li, H. J. Liu, N. Huang, and Q. B. Sun, “Broadband high birefringence and low dispersion terahertz photonic crystal fiber,” J. Opt. 16, 105102 (2014).

Ito, H.

Ito, T.

Iwai, K.

Jiang, Y.

X. L. Tang, Y. Jiang, B. S. Sun, J. Chen, X. S. Zhu, P. Zhou, D. P. Wu, and Y. W. Shi, “Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission,” IEEE Photonics Technol. Lett. 25(4), 331–334 (2013).
[Crossref]

Jung, E.

Kato, Y.

Y. Kato and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microw. Theory Tech. 42(12), 2336–2342 (1994).
[Crossref]

Y. Kato and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microw. Theory Tech. 40(4), 679–685 (1992).
[Crossref]

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric coated circular metallic waveguides for infrared Transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[Crossref]

Kim, J.

Kim, S. S.

A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395(6), 1661–1671 (2009).
[Crossref] [PubMed]

Kino, S.

Komachi, Y.

Lewis, J. E.

S. R. Rengarajan and J. E. Lewis, “Dielectric loaded elliptical waveguides,” IEEE Trans. Microw. Theory Tech. 28(10), 1085–1089 (1980).
[Crossref]

Li, S. P.

S. P. Li, H. J. Liu, N. Huang, and Q. B. Sun, “Broadband high birefringence and low dispersion terahertz photonic crystal fiber,” J. Opt. 16, 105102 (2014).

Li, Z. Y.

J. L. Wang, J. Q. Yao, H. M. Chen, and Z. Y. Li, “A simple birefringent terahertz waveguide based on polymer Elliptical Tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[Crossref]

Liang, H. W.

H. W. Liang, S. C. Ruan, M. Zhang, H. Su, and X. J. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum(Au)/polystyrene(PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Liu, H. J.

S. P. Li, H. J. Liu, N. Huang, and Q. B. Sun, “Broadband high birefringence and low dispersion terahertz photonic crystal fiber,” J. Opt. 16, 105102 (2014).

Llombart, N.

N. Llombart, A. Mazzinghi, P. H. Siegel, and A. Freni, “Design of a low loss metallo-dielectric EBG waveguide at submillimeter wavelengths,” IEEE Microwave Wireless Commun. 19(7), 437–439 (2009).
[Crossref]

Long, L. L.

Marcatili, E. A.

E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Matsumoto, K.

Matsuura, Y.

Mazzinghi, A.

N. Llombart, A. Mazzinghi, P. H. Siegel, and A. Freni, “Design of a low loss metallo-dielectric EBG waveguide at submillimeter wavelengths,” IEEE Microwave Wireless Commun. 19(7), 437–439 (2009).
[Crossref]

Mcmahon, T.

E. Garmire, T. Mcmahon, and M. Bass, “Flexible infrared-transmissive metal waveguides,” Appl. Phys. Lett. 29(4), 254–256 (1976).
[Crossref]

Melzer, J. E.

Minamide, H.

Mitrofanov, O.

Miyagi, M.

X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[Crossref] [PubMed]

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24(5), 1230–1235 (2007).
[Crossref]

Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30(21), 2942–2944 (2005).
[Crossref] [PubMed]

Y. Kato and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microw. Theory Tech. 42(12), 2336–2342 (1994).
[Crossref]

Y. Kato and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microw. Theory Tech. 40(4), 679–685 (1992).
[Crossref]

M. Miyagi and S. Kawakami, “Design theory of dielectric coated circular metallic waveguides for infrared Transmission,” J. Lightwave Technol. 2(2), 116–126 (1984).
[Crossref]

Mizaikoff, B.

A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395(6), 1661–1671 (2009).
[Crossref] [PubMed]

Monro, T. M.

Moon, K.

Morosawa, K.

Mueller, E.

Nagel, M.

Navarro-Cia, M.

Navarro-Cía, M.

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared, Millimeter, Terahertz Waves 36(6), 542–555 (2015).
[Crossref]

Nosich, A. I.

I. A. Tishchenko and A. I. Nosich, “Early quasioptics of near-millimeter and submillimeter waves in IRE-Kharkov Ukraine: From ideas to the microwave pioneer award,” IEEE Microw. Mag. 4(4), 32–44 (2003).
[Crossref]

Ordal, M. A.

Park, H.

Pedersen, P.

Podzorov, A.

Quadir, A.

B. M. A. Rahman, A. Quadir, H. Tanvir, and K. T. V. Grattan, “Characterization of plasmonic modes in a low-loss dielectric-coated hollow core rectangular waveguide at terahertz frequency,” IEEE Photonics J. 3(6), 1054–1066 (2011).
[Crossref]

Rahman, B. M. A.

B. M. A. Rahman, A. Quadir, H. Tanvir, and K. T. V. Grattan, “Characterization of plasmonic modes in a low-loss dielectric-coated hollow core rectangular waveguide at terahertz frequency,” IEEE Photonics J. 3(6), 1054–1066 (2011).
[Crossref]

Ren, G. B.

G. B. Ren, Y. D. Gong, P. Shum, X. Yu, and J. J. Hu, “Polarization maintaining air-core bandgap fibers for terahertz wave guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[Crossref]

Rengarajan, S. R.

S. R. Rengarajan and J. E. Lewis, “Dielectric loaded elliptical waveguides,” IEEE Trans. Microw. Theory Tech. 28(10), 1085–1089 (1980).
[Crossref]

Ritchie, D. A.

Ruan, S. C.

H. W. Liang, S. C. Ruan, M. Zhang, H. Su, and X. J. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum(Au)/polystyrene(PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Sato, H.

Schmeltzer, R. A.

E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Shi, Y. W.

X. L. Tang, Y. Jiang, B. S. Sun, J. Chen, X. S. Zhu, P. Zhou, D. P. Wu, and Y. W. Shi, “Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission,” IEEE Photonics Technol. Lett. 25(4), 331–334 (2013).
[Crossref]

Z. Z. Yu, X. L. Tang, X. R. Wang, and Y. W. Shi, “Transmission characteristics of elliptical terahertz hollow fiber with dielectric and metallic inner coatings,” Acta Opt. Sin. 33(9), 0906009 (2013).
[Crossref]

B. S. Sun, X. L. Tang, X. Zeng, and Y. W. Shi, “Characterization of cylindrical terahertz metallic hollow waveguide with multiple dielectric layers,” Appl. Opt. 51(30), 7276–7285 (2012).
[Crossref] [PubMed]

X. L. Tang, B. S. Sun, and Y. W. Shi, “Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency,” Opt. Express 19(25), 24967–24979 (2011).
[Crossref] [PubMed]

X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[Crossref] [PubMed]

Shiota, T.

Shum, P.

G. B. Ren, Y. D. Gong, P. Shum, X. Yu, and J. J. Hu, “Polarization maintaining air-core bandgap fibers for terahertz wave guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[Crossref]

Siegel, P. H.

N. Llombart, A. Mazzinghi, P. H. Siegel, and A. Freni, “Design of a low loss metallo-dielectric EBG waveguide at submillimeter wavelengths,” IEEE Microwave Wireless Commun. 19(7), 437–439 (2009).
[Crossref]

Su, H.

H. W. Liang, S. C. Ruan, M. Zhang, H. Su, and X. J. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum(Au)/polystyrene(PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Sun, B. S.

Sun, Q. B.

S. P. Li, H. J. Liu, N. Huang, and Q. B. Sun, “Broadband high birefringence and low dispersion terahertz photonic crystal fiber,” J. Opt. 16, 105102 (2014).

Takeda, E.

Tam, H. Y.

Tang, X. L.

X. L. Tang, Y. Jiang, B. S. Sun, J. Chen, X. S. Zhu, P. Zhou, D. P. Wu, and Y. W. Shi, “Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission,” IEEE Photonics Technol. Lett. 25(4), 331–334 (2013).
[Crossref]

Z. Z. Yu, X. L. Tang, X. R. Wang, and Y. W. Shi, “Transmission characteristics of elliptical terahertz hollow fiber with dielectric and metallic inner coatings,” Acta Opt. Sin. 33(9), 0906009 (2013).
[Crossref]

B. S. Sun, X. L. Tang, X. Zeng, and Y. W. Shi, “Characterization of cylindrical terahertz metallic hollow waveguide with multiple dielectric layers,” Appl. Opt. 51(30), 7276–7285 (2012).
[Crossref] [PubMed]

X. L. Tang, B. S. Sun, and Y. W. Shi, “Design and optimization of low-loss high-birefringence hollow fiber at terahertz frequency,” Opt. Express 19(25), 24967–24979 (2011).
[Crossref] [PubMed]

X. L. Tang, Y. W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34(14), 2231–2233 (2009).
[Crossref] [PubMed]

Tanvir, H.

B. M. A. Rahman, A. Quadir, H. Tanvir, and K. T. V. Grattan, “Characterization of plasmonic modes in a low-loss dielectric-coated hollow core rectangular waveguide at terahertz frequency,” IEEE Photonics J. 3(6), 1054–1066 (2011).
[Crossref]

Tashiro, H.

Tishchenko, I. A.

I. A. Tishchenko and A. I. Nosich, “Early quasioptics of near-millimeter and submillimeter waves in IRE-Kharkov Ukraine: From ideas to the microwave pioneer award,” IEEE Microw. Mag. 4(4), 32–44 (2003).
[Crossref]

Vitiello, M. S.

Wang, J. L.

J. L. Wang, J. Q. Yao, H. M. Chen, and Z. Y. Li, “A simple birefringent terahertz waveguide based on polymer Elliptical Tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[Crossref]

Wang, X. R.

Z. Z. Yu, X. L. Tang, X. R. Wang, and Y. W. Shi, “Transmission characteristics of elliptical terahertz hollow fiber with dielectric and metallic inner coatings,” Acta Opt. Sin. 33(9), 0906009 (2013).
[Crossref]

Ward, C. A.

Wilk, A.

A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395(6), 1661–1671 (2009).
[Crossref] [PubMed]

Wu, D. P.

X. L. Tang, Y. Jiang, B. S. Sun, J. Chen, X. S. Zhu, P. Zhou, D. P. Wu, and Y. W. Shi, “Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission,” IEEE Photonics Technol. Lett. 25(4), 331–334 (2013).
[Crossref]

Yao, J. Q.

J. L. Wang, J. Q. Yao, H. M. Chen, and Z. Y. Li, “A simple birefringent terahertz waveguide based on polymer Elliptical Tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[Crossref]

Yu, X.

G. B. Ren, Y. D. Gong, P. Shum, X. Yu, and J. J. Hu, “Polarization maintaining air-core bandgap fibers for terahertz wave guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[Crossref]

Yu, Z. Z.

Z. Z. Yu, X. L. Tang, X. R. Wang, and Y. W. Shi, “Transmission characteristics of elliptical terahertz hollow fiber with dielectric and metallic inner coatings,” Acta Opt. Sin. 33(9), 0906009 (2013).
[Crossref]

Zeng, X.

Zhang, M.

H. W. Liang, S. C. Ruan, M. Zhang, H. Su, and X. J. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum(Au)/polystyrene(PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Zhao, X. J.

H. W. Liang, S. C. Ruan, M. Zhang, H. Su, and X. J. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum(Au)/polystyrene(PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Zhou, P.

X. L. Tang, Y. Jiang, B. S. Sun, J. Chen, X. S. Zhu, P. Zhou, D. P. Wu, and Y. W. Shi, “Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission,” IEEE Photonics Technol. Lett. 25(4), 331–334 (2013).
[Crossref]

Zhu, X. S.

X. L. Tang, Y. Jiang, B. S. Sun, J. Chen, X. S. Zhu, P. Zhou, D. P. Wu, and Y. W. Shi, “Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission,” IEEE Photonics Technol. Lett. 25(4), 331–334 (2013).
[Crossref]

Acta Opt. Sin. (1)

Z. Z. Yu, X. L. Tang, X. R. Wang, and Y. W. Shi, “Transmission characteristics of elliptical terahertz hollow fiber with dielectric and metallic inner coatings,” Acta Opt. Sin. 33(9), 0906009 (2013).
[Crossref]

Anal. Bioanal. Chem. (1)

A. Wilk, S. S. Kim, and B. Mizaikoff, “An approach to the spectral simulation of infrared hollow waveguide gas sensors,” Anal. Bioanal. Chem. 395(6), 1661–1671 (2009).
[Crossref] [PubMed]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

E. Garmire, T. Mcmahon, and M. Bass, “Flexible infrared-transmissive metal waveguides,” Appl. Phys. Lett. 29(4), 254–256 (1976).
[Crossref]

Appl. Spectrosc. (1)

Bell Syst. Tech. J. (1)

E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Chin. Phys. Lett. (1)

J. L. Wang, J. Q. Yao, H. M. Chen, and Z. Y. Li, “A simple birefringent terahertz waveguide based on polymer Elliptical Tube,” Chin. Phys. Lett. 28(1), 014207 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

G. B. Ren, Y. D. Gong, P. Shum, X. Yu, and J. J. Hu, “Polarization maintaining air-core bandgap fibers for terahertz wave guiding,” IEEE J. Quantum Electron. 45(5), 506–513 (2009).
[Crossref]

IEEE Microw. Mag. (1)

I. A. Tishchenko and A. I. Nosich, “Early quasioptics of near-millimeter and submillimeter waves in IRE-Kharkov Ukraine: From ideas to the microwave pioneer award,” IEEE Microw. Mag. 4(4), 32–44 (2003).
[Crossref]

IEEE Microwave Wireless Commun. (1)

N. Llombart, A. Mazzinghi, P. H. Siegel, and A. Freni, “Design of a low loss metallo-dielectric EBG waveguide at submillimeter wavelengths,” IEEE Microwave Wireless Commun. 19(7), 437–439 (2009).
[Crossref]

IEEE Photonics J. (1)

B. M. A. Rahman, A. Quadir, H. Tanvir, and K. T. V. Grattan, “Characterization of plasmonic modes in a low-loss dielectric-coated hollow core rectangular waveguide at terahertz frequency,” IEEE Photonics J. 3(6), 1054–1066 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. L. Tang, Y. Jiang, B. S. Sun, J. Chen, X. S. Zhu, P. Zhou, D. P. Wu, and Y. W. Shi, “Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission,” IEEE Photonics Technol. Lett. 25(4), 331–334 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

S. R. Rengarajan and J. E. Lewis, “Dielectric loaded elliptical waveguides,” IEEE Trans. Microw. Theory Tech. 28(10), 1085–1089 (1980).
[Crossref]

Y. Kato and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microw. Theory Tech. 40(4), 679–685 (1992).
[Crossref]

Y. Kato and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microw. Theory Tech. 42(12), 2336–2342 (1994).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared, Millimeter, Terahertz Waves 36(6), 542–555 (2015).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

S. P. Li, H. J. Liu, N. Huang, and Q. B. Sun, “Broadband high birefringence and low dispersion terahertz photonic crystal fiber,” J. Opt. 16, 105102 (2014).

J. Opt. Soc. Am. B (3)

Opt. Express (4)

Opt. Lett. (3)

Optik (Stuttg.) (1)

H. W. Liang, S. C. Ruan, M. Zhang, H. Su, and X. J. Zhao, “Mode theory of three-layer cylindrical waveguides and its application to aurum(Au)/polystyrene(PS)-coated terahertz hollow waveguides,” Optik (Stuttg.) 125(13), 3076–3080 (2014).
[Crossref]

Other (1)

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Cross section of the elliptical dielectric-coated metallic hollow fiber. a = 1.4 mm, b = 0.5 mm, d1 = 15 μm, d2 = 1 μm, s = 1 μm
Fig. 2
Fig. 2 Low-order eigenmodes of the fiber at 0.87 THz. The electric vector is indicated by the arrows and the power distribution is indicated by the color scale.
Fig. 3
Fig. 3 Coupling efficiency between a Gaussian beam and the three highest-coupled modes at 0.87 THz for (a) x-polarization and (b) y-polarization, with w the beam waist of the Gaussian, a = 1.4 mm, b = 0.5 mm. The experimental parameters w/a = 0.7 and w/b = 2 are indicated.
Fig. 4
Fig. 4 Simulated loss as a function of dielectric layer thickness d1 with various values of d2 , and power distribution for selected cases, for 0.87 THz. (a) Loss for the HE11 x mode. (b) Loss for HE11 y mode. Loss of metallic hollow fiber is shown for comparison in both, and d2 was fixed for each curve. (c) Power distribution of the HE11 x or HE11 y mode for various dielectric layer thicknesses. Positions for (A)-(H) are indicated in Figs. 4(a) and 4(b).
Fig. 5
Fig. 5 Relationship between birefringence and dielectric layer thickness d1 at 0.87 THz, d2 = 5 μm. Transmission loss shown in Fig. 4(a) is added to show variation relationship between birefringence and loss. The birefringence of MHF, which is indicated by the solid line, is added for comparison.
Fig. 6
Fig. 6 (a) Micrograph of the cross section of the fiber. (b)-(d) COP layer at various positions.
Fig. 7
Fig. 7 Measuring system for loss and output polarization.
Fig. 8
Fig. 8 Losses of fibers of different lengths at 0.87 THz. (a) x-polarization, (b) y-polarization.
Fig. 9
Fig. 9 Loss spectrum for elliptical DMHF and MHF. The length of the fibers is 90 cm. The loss shown includes the coupling loss between the test fiber and the coupling fiber.
Fig. 10
Fig. 10 Electric field profile of x-polarization at x = −0.8 mm in (a) MHF (b) DMHF. f = 0.87 THz. The electric field norm is normalized to the maximum value at the center of the fiber. Electric field profile of DMHF at the boundary (air/COP/Ag) is magnified.
Fig. 11
Fig. 11 Additional loss due to silver layer roughness and rough layer structure used for simulations at 0.87 THz. (a) Additional loss as a function of roughness. (b) Rough layer structure used in simulations for MHF and DMHF. The roughness amplitude is 500 nm. Field distribution of the TE11x mode is shown in the upper panel. The lower panel shows the HE11x mode of the DMHF.
Fig. 12
Fig. 12 Measured power at various polarization angles at 0.87 THz for DMHF and MHF. (a) and (c): The incoming light is parallel to the long axis in DMHF and MHF, respectively. (b) and (d): The incoming light is parallel to the short axis in DMHF and MHF, respectively.
Fig. 13
Fig. 13 Bending loss as function of bending angle for 0.87 THz. The experimental setup is shown in the inset in (a). (a) Both incoming polarization and bending plane are parallel to the long axis, (b) both incoming polarization and bending plane are parallel to the short axis, (c) incoming polarization is parallel to the long axis and bending plane is parallel to the short axis, and (d) incoming polarization is parallel to the short axis and bending plane is parallel to the long axis.
Fig. 14
Fig. 14 Polarization ratio as a function of bending angle at 0.87 THz. Four conditions combing two polarizations and two bending directions are considered.

Tables (2)

Tables Icon

Table 1 Simulated mode effective indices and losses of the highest-coupled modes at 0.87 THz

Tables Icon

Table 2 Simulated transmission losses of HE11 mode for various dielectric layer thicknesses at 0.87 THz

Metrics