Abstract

we propose a bit-rate transparent interferometric noise mitigation scheme utilizing the nonlinear modulation curve of electro-absorption modulator (EAM). Both the zero-slope region and the linear modulation region of the nonlinear modulation curve are utilized to suppress interferometric noise and enlarge noise margin of degraded eye diagrams. Using amplitude suppression effect of the zero-slope region, interferometric noise at low frequency range is suppressed successfully. Under different signal to noise ratio (SNR), we measured the power penalties at bit error rate (BER) of 10−9 with and without EAM interferometric noise suppression. By using our proposed scheme, power penalty improvement of 8.5 dB is achieved in a signal with signal-to-noise ratio of 12.5 dB. BER results at various bit rates are analyzed, error floors for each BER curves are removed, significantly improvement in receiver sensitivity and widely opened eye diagrams are resulted.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rayleigh backscattering noise suppression based on real-time heterodyne receiver for loop-back WDM-PON

Hanlin Feng, Shilin Xiao, Qi Zhou, Jia Ge, and Mable P. Fok
Opt. Express 22(19) 22673-22679 (2014)

Reduction of mode partition noise of FP-LD by using Mach-Zehnder interferometer for RSOA-based DWDM applications

Sang-Hwa Yoo, Sang-Rok Moon, Myeonggyun Kye, and Chang-Hee Lee
Opt. Express 24(13) 14494-14505 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Atlas, R. Pidgeon, and F. Little, “Rayleigh backscatter effects on 1550-nm CATV distribution systems employing optical amplifiers,” J. Lightwave Technol. 13(5), 933–946 (1995).
    [Crossref]
  2. Y. J. Chai, R. V. Penty, and I. H. White, “Interferometric noise suppression for WDM applications using a dispersion-imbalanced loop mirror,” in Conference on Lasers and Electro-Optics (CLEO), 2001. pp. 381–382.
    [Crossref]
  3. P. J. Legg, M. Tur, and I. Andonovic, “Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks,” J. Lightwave Technol. 14(9), 1943–1954 (1996).
    [Crossref]
  4. E. Tangdiongga, I. T. Monroy, R. Jonker, and H. De Waardt, “Experimental evaluation of optical crosstalk mitigation using phase scrambling,” IEEE Photonics Technol. Lett. 12(5), 567–569 (2000).
    [Crossref]
  5. P. Pepeljugoski, “Some useful formulas for analysis of interferometric noise,” IEEE P802.3ae 10Gb/s Ethernet Task Force.
  6. M. P. Fok and C. Shu, “Highly nonlinear bismuth-oxide fiber based dispersion imbalanced loop mirror for interferometric noise suppression,” in Optical Fiber Communication Conference (OFC), 2008, OThJ5.
    [Crossref]
  7. D. Yanhua, K. Thompson, M. P. Fok, and P. R. Prucnal, “Interferometric noise characterization and suppression in optical CDMA networks,” IEEE Photonics Technol. Lett. 21(14), 981–983 (2009).
    [Crossref]
  8. Y. Deng, M. P. Fok, and P. R. Prucnal, “Multiple access interference and interferometric noise suppression using dispersion imbalanced loop mirror in optical CDMA networks,” in Optical Fiber Communication Conference (OFC), 2009, OThI4.
    [Crossref]
  9. S.-H. Yoo, S.-R. Moon, M. Kye, and C.-H. Lee, “Pulsed-ASE-seeded DWDM optical system with interferometric noise suppression,” Opt. Express 22(7), 8790–8797 (2014).
    [Crossref] [PubMed]
  10. X. Jing, L. Ming, and C. Lian-Kuan, “Rayleigh noise reduction in 10-Gb/s carrier-distributed WDM-PONs using in-band optical filtering,” J. Lightwave Technol. 29(24), 3632–3639 (2011).
    [Crossref]
  11. A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photonics Technol. Lett. 22(2), 85–87 (2010).
    [Crossref]
  12. D. Jorgesen, C. F. Marki, and S. Esener, “Improved high pass filtering for passive optical networks,” IEEE Photonics Technol. Lett. 22(15), 1144–1146 (2010).
    [Crossref]
  13. M. P. Fok, Y. Deng, K. Kravtsov, and P. R. Prucnal, “Signal beating elimination using single-mode fiber to multimode fiber coupling,” Opt. Lett. 36(23), 4578–4580 (2011).
    [Crossref] [PubMed]
  14. C. F. Marki, F. A. Marki, and S. C. Esener, “Reduction of interferometric optical crosstalk penalty via DC blocking,” Electron. Lett. 43(11), 644–646 (2007).
    [Crossref]
  15. R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photonics Technol. Lett. 11(1), 134–136 (1999).
    [Crossref]
  16. Z. Hu, B. R. Koch, J. E. Bowers, and D. J. Blumenthal, “Integrated photonic/RF 40-Gb/s burst-mode optical clock recovery for asynchronous optical packet switching,” in Optical Fiber Communication Conference (OFC),2006, OThS7.
  17. K. Hasebe, T. Sato, K. Takeda, T. Fujii, T. Kakitsuka, and S. Matsuo, “High-speed modulation of lateral p-i-n diode structure electro-absorption modulator integrated with DFB laser,” J. Lightwave Technol. 33(6), 1235–1240 (2015).
    [Crossref]
  18. Y. Cheng, Q. J. Wang, and J. Pan, “1.55 µm high speed low chirp electroabsorption modulated laser arrays based on SAG scheme,” Opt. Express 22(25), 31286–31292 (2014).
    [Crossref] [PubMed]
  19. H. L. Cheng, W. H. Chen, C. C. Wei, and Y. J. Chiu, “Optical single-sideband OFDM transmission based on a two-segment EAM,” Opt. Express 23(2), 982–990 (2015).
    [Crossref] [PubMed]
  20. O. Leclerc, “Optical vs. electronic in-line signal processing in optical communication systems: An exciting challenge for optical devices”, in Proc. Tech. Dig. Eur. Conf. Integrated Optics (ECIO), 2003, pp. 55–67.
  21. B. K. Saravanan, T. Wenger, C. Hanke, P. Gerlach, M. Peschke, and R. Macaluso, “Wide temperature operation of 40-Gb/s 1550-nm electroabsorption modulated lasers,” IEEE Photonics Technol. Lett. 18(7), 862–864 (2006).
    [Crossref]

2015 (2)

2014 (2)

2011 (2)

2010 (2)

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photonics Technol. Lett. 22(2), 85–87 (2010).
[Crossref]

D. Jorgesen, C. F. Marki, and S. Esener, “Improved high pass filtering for passive optical networks,” IEEE Photonics Technol. Lett. 22(15), 1144–1146 (2010).
[Crossref]

2009 (1)

D. Yanhua, K. Thompson, M. P. Fok, and P. R. Prucnal, “Interferometric noise characterization and suppression in optical CDMA networks,” IEEE Photonics Technol. Lett. 21(14), 981–983 (2009).
[Crossref]

2007 (1)

C. F. Marki, F. A. Marki, and S. C. Esener, “Reduction of interferometric optical crosstalk penalty via DC blocking,” Electron. Lett. 43(11), 644–646 (2007).
[Crossref]

2006 (1)

B. K. Saravanan, T. Wenger, C. Hanke, P. Gerlach, M. Peschke, and R. Macaluso, “Wide temperature operation of 40-Gb/s 1550-nm electroabsorption modulated lasers,” IEEE Photonics Technol. Lett. 18(7), 862–864 (2006).
[Crossref]

2000 (1)

E. Tangdiongga, I. T. Monroy, R. Jonker, and H. De Waardt, “Experimental evaluation of optical crosstalk mitigation using phase scrambling,” IEEE Photonics Technol. Lett. 12(5), 567–569 (2000).
[Crossref]

1999 (1)

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photonics Technol. Lett. 11(1), 134–136 (1999).
[Crossref]

1996 (1)

P. J. Legg, M. Tur, and I. Andonovic, “Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks,” J. Lightwave Technol. 14(9), 1943–1954 (1996).
[Crossref]

1995 (1)

D. A. Atlas, R. Pidgeon, and F. Little, “Rayleigh backscatter effects on 1550-nm CATV distribution systems employing optical amplifiers,” J. Lightwave Technol. 13(5), 933–946 (1995).
[Crossref]

Andonovic, I.

P. J. Legg, M. Tur, and I. Andonovic, “Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks,” J. Lightwave Technol. 14(9), 1943–1954 (1996).
[Crossref]

Atlas, D. A.

D. A. Atlas, R. Pidgeon, and F. Little, “Rayleigh backscatter effects on 1550-nm CATV distribution systems employing optical amplifiers,” J. Lightwave Technol. 13(5), 933–946 (1995).
[Crossref]

Blumenthal, D. J.

Z. Hu, B. R. Koch, J. E. Bowers, and D. J. Blumenthal, “Integrated photonic/RF 40-Gb/s burst-mode optical clock recovery for asynchronous optical packet switching,” in Optical Fiber Communication Conference (OFC),2006, OThS7.

Bowers, J. E.

Z. Hu, B. R. Koch, J. E. Bowers, and D. J. Blumenthal, “Integrated photonic/RF 40-Gb/s burst-mode optical clock recovery for asynchronous optical packet switching,” in Optical Fiber Communication Conference (OFC),2006, OThS7.

Chai, Y. J.

Y. J. Chai, R. V. Penty, and I. H. White, “Interferometric noise suppression for WDM applications using a dispersion-imbalanced loop mirror,” in Conference on Lasers and Electro-Optics (CLEO), 2001. pp. 381–382.
[Crossref]

Chen, W. H.

Cheng, H. L.

Cheng, Y.

Chiu, Y. J.

Chiuchiarelli, A.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photonics Technol. Lett. 22(2), 85–87 (2010).
[Crossref]

Choudhury, P.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photonics Technol. Lett. 22(2), 85–87 (2010).
[Crossref]

Ciaramella, E.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photonics Technol. Lett. 22(2), 85–87 (2010).
[Crossref]

Contestabile, G.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photonics Technol. Lett. 22(2), 85–87 (2010).
[Crossref]

De Waardt, H.

E. Tangdiongga, I. T. Monroy, R. Jonker, and H. De Waardt, “Experimental evaluation of optical crosstalk mitigation using phase scrambling,” IEEE Photonics Technol. Lett. 12(5), 567–569 (2000).
[Crossref]

Deng, Y.

M. P. Fok, Y. Deng, K. Kravtsov, and P. R. Prucnal, “Signal beating elimination using single-mode fiber to multimode fiber coupling,” Opt. Lett. 36(23), 4578–4580 (2011).
[Crossref] [PubMed]

Y. Deng, M. P. Fok, and P. R. Prucnal, “Multiple access interference and interferometric noise suppression using dispersion imbalanced loop mirror in optical CDMA networks,” in Optical Fiber Communication Conference (OFC), 2009, OThI4.
[Crossref]

Esener, S.

D. Jorgesen, C. F. Marki, and S. Esener, “Improved high pass filtering for passive optical networks,” IEEE Photonics Technol. Lett. 22(15), 1144–1146 (2010).
[Crossref]

Esener, S. C.

C. F. Marki, F. A. Marki, and S. C. Esener, “Reduction of interferometric optical crosstalk penalty via DC blocking,” Electron. Lett. 43(11), 644–646 (2007).
[Crossref]

Fok, M. P.

M. P. Fok, Y. Deng, K. Kravtsov, and P. R. Prucnal, “Signal beating elimination using single-mode fiber to multimode fiber coupling,” Opt. Lett. 36(23), 4578–4580 (2011).
[Crossref] [PubMed]

D. Yanhua, K. Thompson, M. P. Fok, and P. R. Prucnal, “Interferometric noise characterization and suppression in optical CDMA networks,” IEEE Photonics Technol. Lett. 21(14), 981–983 (2009).
[Crossref]

Y. Deng, M. P. Fok, and P. R. Prucnal, “Multiple access interference and interferometric noise suppression using dispersion imbalanced loop mirror in optical CDMA networks,” in Optical Fiber Communication Conference (OFC), 2009, OThI4.
[Crossref]

M. P. Fok and C. Shu, “Highly nonlinear bismuth-oxide fiber based dispersion imbalanced loop mirror for interferometric noise suppression,” in Optical Fiber Communication Conference (OFC), 2008, OThJ5.
[Crossref]

Fujii, T.

Gerlach, P.

B. K. Saravanan, T. Wenger, C. Hanke, P. Gerlach, M. Peschke, and R. Macaluso, “Wide temperature operation of 40-Gb/s 1550-nm electroabsorption modulated lasers,” IEEE Photonics Technol. Lett. 18(7), 862–864 (2006).
[Crossref]

Giorgi, L.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photonics Technol. Lett. 22(2), 85–87 (2010).
[Crossref]

Hanke, C.

B. K. Saravanan, T. Wenger, C. Hanke, P. Gerlach, M. Peschke, and R. Macaluso, “Wide temperature operation of 40-Gb/s 1550-nm electroabsorption modulated lasers,” IEEE Photonics Technol. Lett. 18(7), 862–864 (2006).
[Crossref]

Hasebe, K.

Hayee, M. I.

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photonics Technol. Lett. 11(1), 134–136 (1999).
[Crossref]

Hoanca, B.

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photonics Technol. Lett. 11(1), 134–136 (1999).
[Crossref]

Hu, Z.

Z. Hu, B. R. Koch, J. E. Bowers, and D. J. Blumenthal, “Integrated photonic/RF 40-Gb/s burst-mode optical clock recovery for asynchronous optical packet switching,” in Optical Fiber Communication Conference (OFC),2006, OThS7.

Jing, X.

Jonker, R.

E. Tangdiongga, I. T. Monroy, R. Jonker, and H. De Waardt, “Experimental evaluation of optical crosstalk mitigation using phase scrambling,” IEEE Photonics Technol. Lett. 12(5), 567–569 (2000).
[Crossref]

Jorgesen, D.

D. Jorgesen, C. F. Marki, and S. Esener, “Improved high pass filtering for passive optical networks,” IEEE Photonics Technol. Lett. 22(15), 1144–1146 (2010).
[Crossref]

Kakitsuka, T.

Khosravani, R.

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photonics Technol. Lett. 11(1), 134–136 (1999).
[Crossref]

Koch, B. R.

Z. Hu, B. R. Koch, J. E. Bowers, and D. J. Blumenthal, “Integrated photonic/RF 40-Gb/s burst-mode optical clock recovery for asynchronous optical packet switching,” in Optical Fiber Communication Conference (OFC),2006, OThS7.

Kravtsov, K.

Kye, M.

Leclerc, O.

O. Leclerc, “Optical vs. electronic in-line signal processing in optical communication systems: An exciting challenge for optical devices”, in Proc. Tech. Dig. Eur. Conf. Integrated Optics (ECIO), 2003, pp. 55–67.

Lee, C.-H.

Legg, P. J.

P. J. Legg, M. Tur, and I. Andonovic, “Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks,” J. Lightwave Technol. 14(9), 1943–1954 (1996).
[Crossref]

Lian-Kuan, C.

Little, F.

D. A. Atlas, R. Pidgeon, and F. Little, “Rayleigh backscatter effects on 1550-nm CATV distribution systems employing optical amplifiers,” J. Lightwave Technol. 13(5), 933–946 (1995).
[Crossref]

Macaluso, R.

B. K. Saravanan, T. Wenger, C. Hanke, P. Gerlach, M. Peschke, and R. Macaluso, “Wide temperature operation of 40-Gb/s 1550-nm electroabsorption modulated lasers,” IEEE Photonics Technol. Lett. 18(7), 862–864 (2006).
[Crossref]

Marki, C. F.

D. Jorgesen, C. F. Marki, and S. Esener, “Improved high pass filtering for passive optical networks,” IEEE Photonics Technol. Lett. 22(15), 1144–1146 (2010).
[Crossref]

C. F. Marki, F. A. Marki, and S. C. Esener, “Reduction of interferometric optical crosstalk penalty via DC blocking,” Electron. Lett. 43(11), 644–646 (2007).
[Crossref]

Marki, F. A.

C. F. Marki, F. A. Marki, and S. C. Esener, “Reduction of interferometric optical crosstalk penalty via DC blocking,” Electron. Lett. 43(11), 644–646 (2007).
[Crossref]

Matsuo, S.

Ming, L.

Monroy, I. T.

E. Tangdiongga, I. T. Monroy, R. Jonker, and H. De Waardt, “Experimental evaluation of optical crosstalk mitigation using phase scrambling,” IEEE Photonics Technol. Lett. 12(5), 567–569 (2000).
[Crossref]

Moon, S.-R.

Pan, J.

Penty, R. V.

Y. J. Chai, R. V. Penty, and I. H. White, “Interferometric noise suppression for WDM applications using a dispersion-imbalanced loop mirror,” in Conference on Lasers and Electro-Optics (CLEO), 2001. pp. 381–382.
[Crossref]

Peschke, M.

B. K. Saravanan, T. Wenger, C. Hanke, P. Gerlach, M. Peschke, and R. Macaluso, “Wide temperature operation of 40-Gb/s 1550-nm electroabsorption modulated lasers,” IEEE Photonics Technol. Lett. 18(7), 862–864 (2006).
[Crossref]

Pidgeon, R.

D. A. Atlas, R. Pidgeon, and F. Little, “Rayleigh backscatter effects on 1550-nm CATV distribution systems employing optical amplifiers,” J. Lightwave Technol. 13(5), 933–946 (1995).
[Crossref]

Presi, M.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photonics Technol. Lett. 22(2), 85–87 (2010).
[Crossref]

Proietti, R.

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photonics Technol. Lett. 22(2), 85–87 (2010).
[Crossref]

Prucnal, P. R.

M. P. Fok, Y. Deng, K. Kravtsov, and P. R. Prucnal, “Signal beating elimination using single-mode fiber to multimode fiber coupling,” Opt. Lett. 36(23), 4578–4580 (2011).
[Crossref] [PubMed]

D. Yanhua, K. Thompson, M. P. Fok, and P. R. Prucnal, “Interferometric noise characterization and suppression in optical CDMA networks,” IEEE Photonics Technol. Lett. 21(14), 981–983 (2009).
[Crossref]

Y. Deng, M. P. Fok, and P. R. Prucnal, “Multiple access interference and interferometric noise suppression using dispersion imbalanced loop mirror in optical CDMA networks,” in Optical Fiber Communication Conference (OFC), 2009, OThI4.
[Crossref]

Saravanan, B. K.

B. K. Saravanan, T. Wenger, C. Hanke, P. Gerlach, M. Peschke, and R. Macaluso, “Wide temperature operation of 40-Gb/s 1550-nm electroabsorption modulated lasers,” IEEE Photonics Technol. Lett. 18(7), 862–864 (2006).
[Crossref]

Sato, T.

Shu, C.

M. P. Fok and C. Shu, “Highly nonlinear bismuth-oxide fiber based dispersion imbalanced loop mirror for interferometric noise suppression,” in Optical Fiber Communication Conference (OFC), 2008, OThJ5.
[Crossref]

Takeda, K.

Tangdiongga, E.

E. Tangdiongga, I. T. Monroy, R. Jonker, and H. De Waardt, “Experimental evaluation of optical crosstalk mitigation using phase scrambling,” IEEE Photonics Technol. Lett. 12(5), 567–569 (2000).
[Crossref]

Thompson, K.

D. Yanhua, K. Thompson, M. P. Fok, and P. R. Prucnal, “Interferometric noise characterization and suppression in optical CDMA networks,” IEEE Photonics Technol. Lett. 21(14), 981–983 (2009).
[Crossref]

Tur, M.

P. J. Legg, M. Tur, and I. Andonovic, “Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks,” J. Lightwave Technol. 14(9), 1943–1954 (1996).
[Crossref]

Wang, Q. J.

Wei, C. C.

Wenger, T.

B. K. Saravanan, T. Wenger, C. Hanke, P. Gerlach, M. Peschke, and R. Macaluso, “Wide temperature operation of 40-Gb/s 1550-nm electroabsorption modulated lasers,” IEEE Photonics Technol. Lett. 18(7), 862–864 (2006).
[Crossref]

White, I. H.

Y. J. Chai, R. V. Penty, and I. H. White, “Interferometric noise suppression for WDM applications using a dispersion-imbalanced loop mirror,” in Conference on Lasers and Electro-Optics (CLEO), 2001. pp. 381–382.
[Crossref]

Willner, A. E.

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photonics Technol. Lett. 11(1), 134–136 (1999).
[Crossref]

Yanhua, D.

D. Yanhua, K. Thompson, M. P. Fok, and P. R. Prucnal, “Interferometric noise characterization and suppression in optical CDMA networks,” IEEE Photonics Technol. Lett. 21(14), 981–983 (2009).
[Crossref]

Yoo, S.-H.

Electron. Lett. (1)

C. F. Marki, F. A. Marki, and S. C. Esener, “Reduction of interferometric optical crosstalk penalty via DC blocking,” Electron. Lett. 43(11), 644–646 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (6)

R. Khosravani, M. I. Hayee, B. Hoanca, and A. E. Willner, “Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment,” IEEE Photonics Technol. Lett. 11(1), 134–136 (1999).
[Crossref]

A. Chiuchiarelli, M. Presi, R. Proietti, G. Contestabile, P. Choudhury, L. Giorgi, and E. Ciaramella, “Enhancing resilience to Rayleigh crosstalk by means of line coding and electrical filtering,” IEEE Photonics Technol. Lett. 22(2), 85–87 (2010).
[Crossref]

D. Jorgesen, C. F. Marki, and S. Esener, “Improved high pass filtering for passive optical networks,” IEEE Photonics Technol. Lett. 22(15), 1144–1146 (2010).
[Crossref]

E. Tangdiongga, I. T. Monroy, R. Jonker, and H. De Waardt, “Experimental evaluation of optical crosstalk mitigation using phase scrambling,” IEEE Photonics Technol. Lett. 12(5), 567–569 (2000).
[Crossref]

D. Yanhua, K. Thompson, M. P. Fok, and P. R. Prucnal, “Interferometric noise characterization and suppression in optical CDMA networks,” IEEE Photonics Technol. Lett. 21(14), 981–983 (2009).
[Crossref]

B. K. Saravanan, T. Wenger, C. Hanke, P. Gerlach, M. Peschke, and R. Macaluso, “Wide temperature operation of 40-Gb/s 1550-nm electroabsorption modulated lasers,” IEEE Photonics Technol. Lett. 18(7), 862–864 (2006).
[Crossref]

J. Lightwave Technol. (4)

X. Jing, L. Ming, and C. Lian-Kuan, “Rayleigh noise reduction in 10-Gb/s carrier-distributed WDM-PONs using in-band optical filtering,” J. Lightwave Technol. 29(24), 3632–3639 (2011).
[Crossref]

P. J. Legg, M. Tur, and I. Andonovic, “Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks,” J. Lightwave Technol. 14(9), 1943–1954 (1996).
[Crossref]

D. A. Atlas, R. Pidgeon, and F. Little, “Rayleigh backscatter effects on 1550-nm CATV distribution systems employing optical amplifiers,” J. Lightwave Technol. 13(5), 933–946 (1995).
[Crossref]

K. Hasebe, T. Sato, K. Takeda, T. Fujii, T. Kakitsuka, and S. Matsuo, “High-speed modulation of lateral p-i-n diode structure electro-absorption modulator integrated with DFB laser,” J. Lightwave Technol. 33(6), 1235–1240 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Other (6)

Z. Hu, B. R. Koch, J. E. Bowers, and D. J. Blumenthal, “Integrated photonic/RF 40-Gb/s burst-mode optical clock recovery for asynchronous optical packet switching,” in Optical Fiber Communication Conference (OFC),2006, OThS7.

O. Leclerc, “Optical vs. electronic in-line signal processing in optical communication systems: An exciting challenge for optical devices”, in Proc. Tech. Dig. Eur. Conf. Integrated Optics (ECIO), 2003, pp. 55–67.

Y. Deng, M. P. Fok, and P. R. Prucnal, “Multiple access interference and interferometric noise suppression using dispersion imbalanced loop mirror in optical CDMA networks,” in Optical Fiber Communication Conference (OFC), 2009, OThI4.
[Crossref]

Y. J. Chai, R. V. Penty, and I. H. White, “Interferometric noise suppression for WDM applications using a dispersion-imbalanced loop mirror,” in Conference on Lasers and Electro-Optics (CLEO), 2001. pp. 381–382.
[Crossref]

P. Pepeljugoski, “Some useful formulas for analysis of interferometric noise,” IEEE P802.3ae 10Gb/s Ethernet Task Force.

M. P. Fok and C. Shu, “Highly nonlinear bismuth-oxide fiber based dispersion imbalanced loop mirror for interferometric noise suppression,” in Optical Fiber Communication Conference (OFC), 2008, OThJ5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Principle and (b) Experimental setup of the proposed interferometric noise suppression scheme. LD: laser diode, PC: polarization controller, MZM: Mach-Zehnder modulator, PPG: pulse pattern generator, OC: optical coupler, VOA: variable optical attenuator, SMF: single-mode fiber, PD: photodetector, EAM: electro-absorption modulator, RF AMP: radio frequency amplifier.
Fig. 2
Fig. 2 (a) Modulation curves of EAM at various wavelengths; (b) Low frequency interferometric noise with and without mitigation with EAM.
Fig. 3
Fig. 3 (a) Comparison of eye diagrams at different SNR; (b) Measured power penalties vs. SNR.
Fig. 4
Fig. 4 (a) Eye diagrams at different bit rates before (i)-(iii) and after (iv)-(vi) noise suppression; (b) Corresponding BER measurements for various bit-rate.

Metrics