Abstract

This work investigates the imaging performance, in terms of contrast and resolution, of two different time-gated ballistic imaging setups commonly used in spray research. It is shown that the two setups generate similar spatial resolution in the presence of scattering media. The simpler (2f) setup, however, is less sensitive to component misalignments and time-gate induced aberrations than the commonly used (4f) system. Measurements comparing both arrangements indicated slightly higher contrast for the 2f system under the densest conditions for small scatterers. Subsequent computational modeling confirmed the observed tolerance of the 2f system to misalignment and gate effects. The best performing setup was also compared experimentally to its non-time-gated shadow-imaging equivalent, to establish when the time-gate enhances imaging performance. It is shown that the time-gated setup generates higher contrast under almost all of the scattering conditions tested, while the non-time-gated setup generates higher spatial resolution only in the lower scatterer size range at the lowest scatterer concentrations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration

Sean P. Duran, Jason M. Porter, and Terence E. Parker
Appl. Opt. 54(7) 1743-1750 (2015)

Single-shot, two-dimensional ballistic imaging through scattering media

Megan Paciaroni and Mark Linne
Appl. Opt. 43(26) 5100-5109 (2004)

Quantitative image contrast enhancement in time-gated transillumination of scattering media

David Sedarsky, Edouard Berrocal, and Mark Linne
Opt. Express 19(3) 1866-1883 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Fansler and S. Parrish, “Spray measurement technology: a review,” Meas. Sci. Technol. 26, 012002 (2015).
    [Crossref]
  2. M. Linne, “Imaging in the optically dense regions of a spray: a review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
    [Crossref]
  3. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
    [Crossref] [PubMed]
  4. L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr-fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
    [Crossref]
  5. L. Wang, P. P. Ho, and R. R. Alfano, “Time-resolved fourier spectrum and imaging in highly scattering media,” Appl. Opt. 32, 5043–5048 (1993).
    [Crossref] [PubMed]
  6. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media part I: experimental and simulated results for the spatial intensity distribution,” Opt. Express 15, 10649–10665 (2007).
    [Crossref] [PubMed]
  7. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media part II: spatial and temporal analysis of individual scattering orders via monte carlo simulation,” Opt. Express 17, 13792–13809 (2009).
    [Crossref] [PubMed]
  8. M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Sprays 16, 51–69 (2006).
    [Crossref]
  9. J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. A. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt. 48, B137–B144 (2009).
    [Crossref] [PubMed]
  10. D. Sedarsky, E. Berrocal, and M. Linne, “Quantitative image contrast enhancement in time-gated transillumination of scattering media,” Opt. Express 19, 1866–1883 (2011).
    [Crossref] [PubMed]
  11. D. Barnhart, “Optica software,” ( www.opticasoftware.com ).
  12. M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100–5109 (2004).
    [Crossref] [PubMed]
  13. E. Hecht, Optics, 4th ed. (Addison Wesley Longman Inc., 1998).
  14. D. Sedarsky, “Ballistic imaging of transient phenomena in turbid media” (Ph.D. Thesis, Department of Physics, Lund University, 2009).
  15. T. Parker and J. Labs, “Diesel fuel spray droplet sizes and volume fractions from the region 25 mm below the orifice,” Atomization Sprays 13, 18 (2003).
  16. A. Campillo, S. Shapiro, and B. Suydam, “Relationship of self-focusing to spatial instability modes,” Appl. Phys. Lett. 24, 178–180 (1974)
    [Crossref]
  17. G. Lawrence, “GLAD theory manual, ver. 5.5,” (2009). Applied optics research. See www.aor.com .
  18. S. Spuler and M. Linne, “Numerical analysis of beam propagation in pulsed cavity ring-down spectroscopy,” Appl. Opt. 41, 2858–2868 (2002).
    [Crossref] [PubMed]
  19. M. Linne, “Analysis of x-ray phase contrast imaging in atomizing sprays,” Exp. Fluids 52, 1201–1218 (2012).
    [Crossref]
  20. M. Linne, “Analysis of x-ray radiography in atomizing sprays,” Exp. Fluids 53, 655–671 (2012).
    [Crossref]
  21. R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
    [Crossref]
  22. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
    [Crossref]
  23. E. Reynoso Lara, Z. Navarrete Meza, M. D. Iturbe Castillo, C. G. Trevino Palacios, E. Marti Panameno, and M. L. Arroyo Carrasco, “Influence of the photoinduced focal length of a thin nonlinear material in the z-scan technique,” Opt. Express 15, 2517–2529 (2007).
    [Crossref] [PubMed]
  24. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [Crossref] [PubMed]
  25. A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
    [Crossref]
  26. R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
    [Crossref]
  27. S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J. B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
    [Crossref]
  28. H. Purwar, S. Idlahcen, C. Roze, D. Sedarsky, and J. B. Blaisot, “Collinear, two-color optical kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
    [Crossref] [PubMed]

2015 (1)

T. Fansler and S. Parrish, “Spray measurement technology: a review,” Meas. Sci. Technol. 26, 012002 (2015).
[Crossref]

2014 (1)

2013 (1)

M. Linne, “Imaging in the optically dense regions of a spray: a review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
[Crossref]

2012 (3)

M. Linne, “Analysis of x-ray phase contrast imaging in atomizing sprays,” Exp. Fluids 52, 1201–1218 (2012).
[Crossref]

M. Linne, “Analysis of x-ray radiography in atomizing sprays,” Exp. Fluids 53, 655–671 (2012).
[Crossref]

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J. B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

2011 (1)

2009 (2)

2007 (2)

2006 (1)

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Sprays 16, 51–69 (2006).
[Crossref]

2004 (3)

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100–5109 (2004).
[Crossref] [PubMed]

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

2003 (3)

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

T. Parker and J. Labs, “Diesel fuel spray droplet sizes and volume fractions from the region 25 mm below the orifice,” Atomization Sprays 13, 18 (2003).

2002 (1)

1993 (2)

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

1974 (1)

A. Campillo, S. Shapiro, and B. Suydam, “Relationship of self-focusing to spatial instability modes,” Appl. Phys. Lett. 24, 178–180 (1974)
[Crossref]

1966 (1)

Alfano, R. R.

Arroyo Carrasco, M. L.

Baba, M.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[Crossref]

Berrocal, E.

Blaisot, J. B.

H. Purwar, S. Idlahcen, C. Roze, D. Sedarsky, and J. B. Blaisot, “Collinear, two-color optical kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
[Crossref] [PubMed]

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J. B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

Campillo, A.

A. Campillo, S. Shapiro, and B. Suydam, “Relationship of self-focusing to spatial instability modes,” Appl. Phys. Lett. 24, 178–180 (1974)
[Crossref]

Chaux, R.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Couris, S.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Dai, H.

Danczyk, S. A.

Delplanque, J. P.

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Sprays 16, 51–69 (2006).
[Crossref]

Fansler, T.

T. Fansler and S. Parrish, “Spray measurement technology: a review,” Meas. Sci. Technol. 26, 012002 (2015).
[Crossref]

Faucher, O.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Girasole, T.

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J. B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

Gord, J. R.

Hall, T.

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Sprays 16, 51–69 (2006).
[Crossref]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison Wesley Longman Inc., 1998).

Ho, P. P.

Idlahcen, S.

H. Purwar, S. Idlahcen, C. Roze, D. Sedarsky, and J. B. Blaisot, “Collinear, two-color optical kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
[Crossref] [PubMed]

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J. B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

Ishizawa, N.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[Crossref]

Iturbe Castillo, M. D.

Kogelnik, H.

Koudoumas, E.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Kuroda, H.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Labs, J.

T. Parker and J. Labs, “Diesel fuel spray droplet sizes and volume fractions from the region 25 mm below the orifice,” Atomization Sprays 13, 18 (2003).

Lavorel, B.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Li, T.

Liang, X.

Linne, M.

M. Linne, “Imaging in the optically dense regions of a spray: a review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
[Crossref]

M. Linne, “Analysis of x-ray phase contrast imaging in atomizing sprays,” Exp. Fluids 52, 1201–1218 (2012).
[Crossref]

M. Linne, “Analysis of x-ray radiography in atomizing sprays,” Exp. Fluids 53, 655–671 (2012).
[Crossref]

D. Sedarsky, E. Berrocal, and M. Linne, “Quantitative image contrast enhancement in time-gated transillumination of scattering media,” Opt. Express 19, 1866–1883 (2011).
[Crossref] [PubMed]

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Sprays 16, 51–69 (2006).
[Crossref]

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100–5109 (2004).
[Crossref] [PubMed]

S. Spuler and M. Linne, “Numerical analysis of beam propagation in pulsed cavity ring-down spectroscopy,” Appl. Opt. 41, 2858–2868 (2002).
[Crossref] [PubMed]

Linne, M. A.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Marti Panameno, E.

Mees, L.

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J. B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

Meglinski, I. V.

Meyer, T. R.

Michaut, X.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Navarrete Meza, Z.

Paciaroni, M.

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Sprays 16, 51–69 (2006).
[Crossref]

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100–5109 (2004).
[Crossref] [PubMed]

Paciaroni, M. E.

Parker, T.

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Sprays 16, 51–69 (2006).
[Crossref]

T. Parker and J. Labs, “Diesel fuel spray droplet sizes and volume fractions from the region 25 mm below the orifice,” Atomization Sprays 13, 18 (2003).

Parrish, S.

T. Fansler and S. Parrish, “Spray measurement technology: a review,” Meas. Sci. Technol. 26, 012002 (2015).
[Crossref]

Purwar, H.

Renard, M.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Reynoso Lara, E.

Roy, S.

Roze, C.

H. Purwar, S. Idlahcen, C. Roze, D. Sedarsky, and J. B. Blaisot, “Collinear, two-color optical kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
[Crossref] [PubMed]

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J. B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[Crossref]

Sakakibara, S.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

Schaefer, Z. D.

Schmidt, J. B.

Sedarsky, D.

Sedarsky, D. L.

Shapiro, S.

A. Campillo, S. Shapiro, and B. Suydam, “Relationship of self-focusing to spatial instability modes,” Appl. Phys. Lett. 24, 178–180 (1974)
[Crossref]

Spuler, S.

Suydam, B.

A. Campillo, S. Shapiro, and B. Suydam, “Relationship of self-focusing to spatial instability modes,” Appl. Phys. Lett. 24, 178–180 (1974)
[Crossref]

Suzuki, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Trevino Palacios, C. G.

Turu, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Wang, L.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (1)

R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B 78, 433–438 (2004).
[Crossref]

Appl. Phys. Lett. (1)

A. Campillo, S. Shapiro, and B. Suydam, “Relationship of self-focusing to spatial instability modes,” Appl. Phys. Lett. 24, 178–180 (1974)
[Crossref]

Atomization Sprays (2)

M. Paciaroni, M. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atomization Sprays 16, 51–69 (2006).
[Crossref]

T. Parker and J. Labs, “Diesel fuel spray droplet sizes and volume fractions from the region 25 mm below the orifice,” Atomization Sprays 13, 18 (2003).

Chem. Phys. Lett. (1)

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003).
[Crossref]

Exp. Fluids (3)

S. Idlahcen, C. Roze, L. Mees, T. Girasole, and J. B. Blaisot, “Sub-picosecond ballistic imaging of a liquid jet,” Exp. Fluids 52, 289–298 (2012).
[Crossref]

M. Linne, “Analysis of x-ray phase contrast imaging in atomizing sprays,” Exp. Fluids 52, 1201–1218 (2012).
[Crossref]

M. Linne, “Analysis of x-ray radiography in atomizing sprays,” Exp. Fluids 53, 655–671 (2012).
[Crossref]

J. Appl. Phys. (1)

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003).
[Crossref]

Meas. Sci. Technol. (1)

T. Fansler and S. Parrish, “Spray measurement technology: a review,” Meas. Sci. Technol. 26, 012002 (2015).
[Crossref]

Opt. Commun. (1)

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Prog. Energy Combust. Sci. (1)

M. Linne, “Imaging in the optically dense regions of a spray: a review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
[Crossref]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Other (4)

D. Barnhart, “Optica software,” ( www.opticasoftware.com ).

G. Lawrence, “GLAD theory manual, ver. 5.5,” (2009). Applied optics research. See www.aor.com .

E. Hecht, Optics, 4th ed. (Addison Wesley Longman Inc., 1998).

D. Sedarsky, “Ballistic imaging of transient phenomena in turbid media” (Ph.D. Thesis, Department of Physics, Lund University, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Optical setups. Part a) shows the 4f setup and part b) the 2f setup. For USI the polarizers and the CS2 cell (Kerr medium) were removed and the gate beam blocked.
Fig. 2
Fig. 2 a) – d) Logarithmic polar plots of the scattering phase functions for 5 μm, 10 μm, 15 μm, and 20 μm fuel drops in air with the corresponding phase functions for the PS spheres in water. 0° corresponds to strictly forward scattering.
Fig. 3
Fig. 3 Representative raw images of a 3.56 lp/mm line pattern for TGBI with 3.5 μm spheres at OD7, and 14.9μm spheres at OD10.
Fig. 4
Fig. 4 Experimentally measured CTFs for 4f and 2f TGBI setups with sphere sizes of 3.5 μm and 8.0 μm. The error bars represent one standard deviation.
Fig. 5
Fig. 5 Experimentally measured CTFs for 4f and 2f TGBI setups with sphere sizes of 9.7 μm and 14.9 μm. The error bars represent one standard deviation.
Fig. 6
Fig. 6 Comparison of images of the Siemens star target generated with the 2f setup using an image pulse energy of 50 μJ with the CS2 cell placed at 26 cm and 38 cm behind the collecting lens.
Fig. 7
Fig. 7 Mean contrast (average over 6.1–32.0 lp/mm in the CTF) as function of distance between collecting lens and CS2 cell with the gate beam blocked and the OKE-gate opened for the 4f setup. The normalized curves show significant degradation in mean contrast near the focal plane. The error bars represent one standard deviation.
Fig. 8
Fig. 8 Mean contrast (average over 6.1–32.0 lp/mm in the CTF) as function of gate pulse energy for 4f and 2f setups. The error bars represent one standard deviation.
Fig. 9
Fig. 9 Illustration of the GRIN effect model.
Fig. 10
Fig. 10 Comparison of the GRIN model with the analytical ABCD matrix results from Eq. (5). In both cases a pulse length of 100 fs was assumed. In the computational model a 4 mm radius Gaussian beam was propagated through the GRIN model which here was implemented with θ = 0 and no transverse offset.
Fig. 11
Fig. 11 Model CTFs showing effects of misalignment of the collecting lens along the optic axis in the computational model. The CS2 is modeled as an isotropic medium (Ep = 0).
Fig. 12
Fig. 12 Model CTFs showing effects of changes in the gate pulse energy (Ep) in the computational model with θ = 0, τ = 100 fs, and Xoffset = 0.
Fig. 13
Fig. 13 Model CTFs showing effects of changes in the gate beam angle (θ) in the computational model with Ep = 0.2 mJ, τ = 100 fs, and Xoffset = 0.
Fig. 14
Fig. 14 Model CTFs showing effects of changes in the gate offset (Xoffset) in the computational model with Ep = 0.2 mJ, θ = 20°, τ = 100 fs.
Fig. 15
Fig. 15 Experimentally measured CTFs for 2f TGBI and USI setups with sphere sizes of 3.5 μm and 8.0 μm. The error bars represent one standard deviation.
Fig. 16
Fig. 16 Experimentally measured CTFs for 2f TGBI and USI setups with sphere sizes of 9.7 μm and 14.9 μm. The error bars represent one standard deviation.

Tables (1)

Tables Icon

Table 1 Scattering cross-sections for the used PS sphere sizes in water using 800 nm light.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I I 0 = e OD , OD = n σ ext L .
n ( r g , t ) = n 0 + n 2 I g ( r g , t ) .
I g ( r g , t ) = 2 P p π ω 2 exp ( 2 r g 2 ω 2 ln ( 2 ) t 2 τ 2 ) ,
n ( r g ) n 0 + 2 n 2 P p π ω 2 4 n 2 P p π ω 4 r g 2 .
f GRIN = 1 n 0 γ sin ( γ L ) .
X 0 = X offset + 0.5 L tan ( θ ) .
X dec ( j ) = X 0 tan ( θ ) 1 j Δ z .

Metrics