Abstract

We present a scheme to broaden the sweeping span of lightwave synthesized frequency sweeper (LSFS) by using self-induced auto-tracking filter (SIATF). It is based on spatial-hole-burning effect in unpumped erbium-doped fiber (EDF), equivalent to introducing a Bragg grating. This Bragg grating works as the SIAFT, tracks the frequency of the incident optical signal automatically. It broadens LSFS’s sweeping span limited by the homogeneous broadening of EDF. The scheme is demonstrated experimentally that the amplified spontaneous emission (ASE) noise is effectively suppressed meanwhile sweeping span of LSFS is enlarged. 12.48nm sweeping span within 3.5dB power change is obtained, which corresponds to 1.56THz sweeping span.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accurate simulation of Raman amplified lightwave synthesized frequency sweeper

Anders Tegtmeier Pedersen, Anders Sig Olesen, and Karsten Rottwitt
J. Opt. Soc. Am. B 28(6) 1493-1497 (2011)

Large-region tunable optical bistability in saturable absorber-based single-frequency Brillouin fiber lasers

Liang Zhang, Li Zhan, Minglei Qin, Zhixin Zou, Zhiqiang Wang, and Jinmei Liu
J. Opt. Soc. Am. B 32(6) 1113-1119 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. G. Hodgkinson and P. Coppin, “Pulsed operation of an optical feedback frequency synthesiser,” Electron. Lett. 26(15), 1155–1157 (1990).
    [Crossref]
  2. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Technique for translating light-wave frequency by using an optical ring circuit containing a frequency shifter,” Opt. Lett. 17(18), 1307–1309 (1992).
    [Crossref] [PubMed]
  3. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: 1. Experiment,” Appl. Opt. 32(33), 6718–6726 (1993).
    [Crossref] [PubMed]
  4. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: II. Theoretical analysis,” Appl. Opt. 33(15), 3209–3219 (1994).
    [Crossref] [PubMed]
  5. H. Suzuki, J. I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photonics Technol. Lett. 12(7), 903–905 (2000).
    [Crossref]
  6. H. Takesue and T. Horiguchi, “Very fast chromatic dispersion measurement using lightwave synthesized frequency sweeper and lock-in detection with phase diversity technique,” in Optical Fiber Communication Conference and International Conference on Quantum Information, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper WDD87.
    [Crossref]
  7. F. Nielsen, L. Thrane, J. Black, A. Bjarklev, and P. Andersen, “Swept wavelength source in the 1 µm range,” Opt. Express 13(11), 4096–4106 (2005).
    [Crossref] [PubMed]
  8. H. Takesue and T. Horiguchi, “Chromatic dispersion measurement of optical components using lightwave synthesized frequency sweeper,” J. Lightwave Technol. 20(4), 625–633 (2002).
    [Crossref]
  9. P. Lindelöw and J. J. Mohr, “Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere,” in Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2007), pp. 2787–2790.
    [Crossref]
  10. H. Takesue, F. Yamamoto, K. Shimizu, and T. Horiguchi, “1THz lightwave synthesized frequency sweeper with synchronously tuned bandpass filter,” Electron. Lett. 34(15), 1507–1508 (1998).
    [Crossref]
  11. H. Takesue and T. Horiguchi, “Broad-band lightwave synthesized frequency sweeper using synchronous filtering,” J. Lightwave Technol. 22(3), 755–762 (2004).
    [Crossref]
  12. H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 15(2), 185–187 (2003).
    [Crossref]
  13. N. Kishi and T. Yazaki, “Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning,” IEEE Photonics Technol. Lett. 11(2), 182–184 (1999).
    [Crossref]
  14. B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. Digiovanni, “Nonlinear wave mixing and induced gratings in erbium-doped fiber amplifiers,” Opt. Lett. 18(24), 2108–2110 (1993).
    [Crossref] [PubMed]
  15. S. J. Frisken, “Transient Bragg reflection gratings in erbium-doped fiber amplifiers,” Opt. Lett. 17(24), 1776–1778 (1992).
    [Crossref] [PubMed]
  16. E. Desurvire and M. N. Zervas, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” Phys. Today 48(2), 56–58 (2008).
    [Crossref]
  17. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

2008 (1)

E. Desurvire and M. N. Zervas, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” Phys. Today 48(2), 56–58 (2008).
[Crossref]

2005 (1)

2004 (1)

2003 (1)

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 15(2), 185–187 (2003).
[Crossref]

2002 (1)

2000 (1)

H. Suzuki, J. I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photonics Technol. Lett. 12(7), 903–905 (2000).
[Crossref]

1999 (1)

N. Kishi and T. Yazaki, “Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning,” IEEE Photonics Technol. Lett. 11(2), 182–184 (1999).
[Crossref]

1998 (1)

H. Takesue, F. Yamamoto, K. Shimizu, and T. Horiguchi, “1THz lightwave synthesized frequency sweeper with synchronously tuned bandpass filter,” Electron. Lett. 34(15), 1507–1508 (1998).
[Crossref]

1994 (1)

1993 (2)

1992 (2)

1990 (1)

T. G. Hodgkinson and P. Coppin, “Pulsed operation of an optical feedback frequency synthesiser,” Electron. Lett. 26(15), 1155–1157 (1990).
[Crossref]

Andersen, P.

Babin, F.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 15(2), 185–187 (2003).
[Crossref]

Bjarklev, A.

Black, J.

Chen, H.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 15(2), 185–187 (2003).
[Crossref]

Coppin, P.

T. G. Hodgkinson and P. Coppin, “Pulsed operation of an optical feedback frequency synthesiser,” Electron. Lett. 26(15), 1155–1157 (1990).
[Crossref]

Desurvire, E.

E. Desurvire and M. N. Zervas, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” Phys. Today 48(2), 56–58 (2008).
[Crossref]

Digiovanni, D. J.

Fischer, B.

Frisken, S. J.

Hodgkinson, T. G.

T. G. Hodgkinson and P. Coppin, “Pulsed operation of an optical feedback frequency synthesiser,” Electron. Lett. 26(15), 1155–1157 (1990).
[Crossref]

Horiguchi, T.

Iwatsuki, K.

H. Suzuki, J. I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photonics Technol. Lett. 12(7), 903–905 (2000).
[Crossref]

Kani, J. I.

H. Suzuki, J. I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photonics Technol. Lett. 12(7), 903–905 (2000).
[Crossref]

Kishi, N.

N. Kishi and T. Yazaki, “Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning,” IEEE Photonics Technol. Lett. 11(2), 182–184 (1999).
[Crossref]

Koyamada, Y.

Leblanc, M.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 15(2), 185–187 (2003).
[Crossref]

Lindelöw, P.

P. Lindelöw and J. J. Mohr, “Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere,” in Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2007), pp. 2787–2790.
[Crossref]

Masuda, H.

H. Suzuki, J. I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photonics Technol. Lett. 12(7), 903–905 (2000).
[Crossref]

Mohr, J. J.

P. Lindelöw and J. J. Mohr, “Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere,” in Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2007), pp. 2787–2790.
[Crossref]

Nielsen, F.

Schinn, G. W.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 15(2), 185–187 (2003).
[Crossref]

Shimizu, K.

Sulhoff, J. W.

Sumida, M.

H. Suzuki, J. I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photonics Technol. Lett. 12(7), 903–905 (2000).
[Crossref]

Suzuki, H.

H. Suzuki, J. I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photonics Technol. Lett. 12(7), 903–905 (2000).
[Crossref]

Tada, Y.

H. Suzuki, J. I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photonics Technol. Lett. 12(7), 903–905 (2000).
[Crossref]

Takachio, N.

H. Suzuki, J. I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photonics Technol. Lett. 12(7), 903–905 (2000).
[Crossref]

Takesue, H.

Thrane, L.

Yamamoto, F.

H. Takesue, F. Yamamoto, K. Shimizu, and T. Horiguchi, “1THz lightwave synthesized frequency sweeper with synchronously tuned bandpass filter,” Electron. Lett. 34(15), 1507–1508 (1998).
[Crossref]

Yazaki, T.

N. Kishi and T. Yazaki, “Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning,” IEEE Photonics Technol. Lett. 11(2), 182–184 (1999).
[Crossref]

Zervas, M. N.

E. Desurvire and M. N. Zervas, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” Phys. Today 48(2), 56–58 (2008).
[Crossref]

Zyskind, J. L.

Appl. Opt. (2)

Electron. Lett. (2)

T. G. Hodgkinson and P. Coppin, “Pulsed operation of an optical feedback frequency synthesiser,” Electron. Lett. 26(15), 1155–1157 (1990).
[Crossref]

H. Takesue, F. Yamamoto, K. Shimizu, and T. Horiguchi, “1THz lightwave synthesized frequency sweeper with synchronously tuned bandpass filter,” Electron. Lett. 34(15), 1507–1508 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (3)

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 15(2), 185–187 (2003).
[Crossref]

N. Kishi and T. Yazaki, “Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning,” IEEE Photonics Technol. Lett. 11(2), 182–184 (1999).
[Crossref]

H. Suzuki, J. I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s (100×10 Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photonics Technol. Lett. 12(7), 903–905 (2000).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (3)

Phys. Today (1)

E. Desurvire and M. N. Zervas, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” Phys. Today 48(2), 56–58 (2008).
[Crossref]

Other (3)

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

H. Takesue and T. Horiguchi, “Very fast chromatic dispersion measurement using lightwave synthesized frequency sweeper and lock-in detection with phase diversity technique,” in Optical Fiber Communication Conference and International Conference on Quantum Information, Vol. 3 of 2001 OSA Technical Digest Series (Optical Society of America, 2001), paper WDD87.
[Crossref]

P. Lindelöw and J. J. Mohr, “Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere,” in Proceeding of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2007), pp. 2787–2790.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup.
Fig. 2
Fig. 2 Output spectrum of the LSFS without any filter.
Fig. 3
Fig. 3 Output spectrum of the LSFS without SIATF.
Fig. 4
Fig. 4 Output spectrum of the LSFS with SIATF under the same polarization state.
Fig. 5
Fig. 5 The temporal domain measurements of LSFS output.
Fig. 6
Fig. 6 Factor F as a function of the circulation number with or without SIATF.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ f = c λ κ ( Δ n 2 n e f f ) 2 + ( Λ L g ) 2

Metrics