Abstract

The use of nanojoule femtosecond pulses (NFP) for highly precise proceeding in anti-glaucoma surgery was evaluated. According to the observation of scanning electron microscopy (SEM), four types of incision patterns, including subsurface, slit-like, spot and cuboid ablations, were accomplished on in vitro sclera by NFP with little collateral damage. In comparison to microjoule femtosecond pulses (MFP), NFP can make extremely precise incisions with smoother inner surface with less peak power density. The present study first illustrates the potential use of NFP in minimally invasive laser sclerectomy for glaucoma therapy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared

Karsten König, Oliver Krauss, and Iris Riemann
Opt. Express 10(3) 171-176 (2002)

Fabrication of microlens arrays in polycarbonate with nanojoule energy femtosecond laser pulses

Trevor Meunier, Ana B. Villafranca, Ravi Bhardwaj, and Arnaud Weck
Opt. Lett. 37(20) 4266-4268 (2012)

Nanodissection of human chromosomes with near-infrared femtosecond laser pulses

K. König, I. Riemann, and W. Fritzsche
Opt. Lett. 26(11) 819-821 (2001)

References

  • View by:
  • |
  • |
  • |

  1. D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
    [Crossref] [PubMed]
  2. L. K. Seibold, M. B. Sherwood, and M. Y. Kahook, “Wound modulation after filtration surgery,” Surv. Ophthalmol. 57(6), 530–550 (2012).
    [Crossref] [PubMed]
  3. S. Georgoulas, A. Dahlmann-Noor, S. Brocchini, and P. T. Khaw, “Modulation of wound healing during and after glaucoma surgery,” Prog. Brain Res. 173, 237–254 (2008).
    [Crossref] [PubMed]
  4. H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
    [Crossref] [PubMed]
  5. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref] [PubMed]
  6. G. Kullman and R. Pineda, “Alternative applications of the femtosecond laser in ophthalmology,” Semin. Ophthalmol. 25(5-6), 256–264 (2010).
    [Crossref] [PubMed]
  7. Z. S. Sacks, R. M. Kurtz, T. Juhasz, and G. A. Mourau, “High precision subsurface photodisruption in human sclera,” J. Biomed. Opt. 7(3), 442–450 (2002).
    [Crossref] [PubMed]
  8. Z. S. Sacks, R. M. Kurtz, T. Juhasz, G. Spooner, and G. A. Mouroua, “Subsurface photodisruption in human sclera: wavelength dependence,” Ophthalmic Surg. Lasers Imaging 34(2), 104–113 (2003).
    [PubMed]
  9. I. Bahar, I. Kaiserman, G. E. Trope, and D. Rootman, “Non-penetrating deep sclerectomy for glaucoma surgery using the femtosecond laser: a laboratory model,” Br. J. Ophthalmol. 91(12), 1713–1714 (2007).
    [Crossref] [PubMed]
  10. D. Chai, G. Chaudhary, E. Mikula, H. Sun, R. Kurtz, and T. Juhasz, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
    [Crossref] [PubMed]
  11. X. Yang, N. Dai, H. Long, P. Lu, W. Li, and F. Jiang, “Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study,” Opt. Lasers Eng. 48(7-8), 806–810 (2010).
    [Crossref]
  12. Y. Shi, X. B. Yang, N. L. Dai, H. Long, P. X. Lu, L. Jin, and F. G. Jiang, “External sclerostomy with the femtosecond laser versus a surgical knife in rabbits,” Int. J. Ophthalmol. 5(3), 258–265 (2012).
    [PubMed]
  13. A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Opt. Express 13(10), 3690–3696 (2005).
    [Crossref] [PubMed]
  14. A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
    [Crossref] [PubMed]
  15. G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
    [Crossref] [PubMed]
  16. D. X. Hou, D. L. Butler, L. M. He, and H. Y. Zheng, “Experimental study on low pulse energy processing with femtosecond lasers for glaucoma treatment,” Lasers Med. Sci. 24(2), 151–154 (2009).
    [Crossref] [PubMed]
  17. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
    [Crossref] [PubMed]
  18. K. Konig, B. Wang, O. Krauss, I. Riemann, H. Schubert, S. Kirste, and P. Fischer, “First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses,” Proc. SPIE 5314, 262–269 (2004).
    [Crossref]
  19. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
    [Crossref] [PubMed]
  20. K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
    [Crossref] [PubMed]
  21. T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
    [Crossref] [PubMed]
  22. B. G. Wang, C. P. Lohmann, I. Riemann, H. Schubert, K. J. Halbhuber, and K. König, “Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser,” J. Refract. Surg. 24(8), 833–839 (2008).
    [PubMed]
  23. A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold,” Proc. SPIE 4633, 23–37 (2002).
    [Crossref]
  24. B. G. Wang and K. J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
    [Crossref] [PubMed]
  25. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
    [Crossref] [PubMed]
  26. L. Xu, K. R. Huxlin, M. DeMagistris, N. Wang, L. Ding, and W. H. Knox, “Non-invasive Blue Intra-tissue Refractive Index Shaping (IRIS) In Living, Excised Cornea,” in Frontiers in Optics 2010/Laser Science XXVI, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPA11.
  27. L. Xu, W. H. Knox, and K. R. Huxlin, “Exogenous and endogenous two-photon absorption for Intra-tissue Refractive Index Shaping (IRIS) in live corneal tissue [Invited],” Opt. Mater. Express 1(7), 1159–1164 (2011).
    [Crossref]
  28. L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
    [Crossref] [PubMed]
  29. M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
    [Crossref] [PubMed]
  30. S. Yavaş, M. Erdogan, K. Gürel, F. O. Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012).
    [Crossref] [PubMed]
  31. M. Choi and S. H. Yun, “In vivo femtosecond endosurgery: an intestinal epithelial regeneration-after-injury model,” Opt. Express 21(25), 30842–30848 (2013).
    [Crossref] [PubMed]
  32. W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, “Femtosecond laser disruption of subcellular organelles in a living cell,” Opt. Express 12(18), 4203–4213 (2004).
    [Crossref] [PubMed]
  33. H. He, S. Y. Li, S. Y. Wang, M. L. Hu, Y. J. Cao, and C. Y. Wang, “Manipulation of cellular light from green fluorescent protein by a femtosecond laser,” Nat. Photonics 6(10), 651–656 (2012).
    [Crossref]
  34. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
    [Crossref] [PubMed]
  35. H. He, S. K. Kong, R. K. Lee, Y. K. Suen, and K. T. Chan, “Targeted photoporation and transfection in human HepG2 cells by a fiber femtosecond laser at 1554 nm,” Opt. Lett. 33(24), 2961–2963 (2008).
    [Crossref] [PubMed]
  36. A. Hansen, R. Géneaux, A. Günther, A. Krüger, and T. Ripken, “Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics,” Biomed. Opt. Express 4(6), 852–867 (2013).
    [Crossref] [PubMed]
  37. G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
    [Crossref] [PubMed]

2014 (1)

A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (5)

S. Yavaş, M. Erdogan, K. Gürel, F. O. Ilday, Y. B. Eldeniz, and U. H. Tazebay, “Fiber laser-microscope system for femtosecond photodisruption of biological samples,” Biomed. Opt. Express 3(3), 605–611 (2012).
[Crossref] [PubMed]

H. He, S. Y. Li, S. Y. Wang, M. L. Hu, Y. J. Cao, and C. Y. Wang, “Manipulation of cellular light from green fluorescent protein by a femtosecond laser,” Nat. Photonics 6(10), 651–656 (2012).
[Crossref]

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

L. K. Seibold, M. B. Sherwood, and M. Y. Kahook, “Wound modulation after filtration surgery,” Surv. Ophthalmol. 57(6), 530–550 (2012).
[Crossref] [PubMed]

Y. Shi, X. B. Yang, N. L. Dai, H. Long, P. X. Lu, L. Jin, and F. G. Jiang, “External sclerostomy with the femtosecond laser versus a surgical knife in rabbits,” Int. J. Ophthalmol. 5(3), 258–265 (2012).
[PubMed]

2011 (1)

2010 (3)

D. Chai, G. Chaudhary, E. Mikula, H. Sun, R. Kurtz, and T. Juhasz, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref] [PubMed]

X. Yang, N. Dai, H. Long, P. Lu, W. Li, and F. Jiang, “Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study,” Opt. Lasers Eng. 48(7-8), 806–810 (2010).
[Crossref]

G. Kullman and R. Pineda, “Alternative applications of the femtosecond laser in ophthalmology,” Semin. Ophthalmol. 25(5-6), 256–264 (2010).
[Crossref] [PubMed]

2009 (4)

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

D. X. Hou, D. L. Butler, L. M. He, and H. Y. Zheng, “Experimental study on low pulse energy processing with femtosecond lasers for glaucoma treatment,” Lasers Med. Sci. 24(2), 151–154 (2009).
[Crossref] [PubMed]

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

2008 (6)

S. Georgoulas, A. Dahlmann-Noor, S. Brocchini, and P. T. Khaw, “Modulation of wound healing during and after glaucoma surgery,” Prog. Brain Res. 173, 237–254 (2008).
[Crossref] [PubMed]

H. He, S. K. Kong, R. K. Lee, Y. K. Suen, and K. T. Chan, “Targeted photoporation and transfection in human HepG2 cells by a fiber femtosecond laser at 1554 nm,” Opt. Lett. 33(24), 2961–2963 (2008).
[Crossref] [PubMed]

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref] [PubMed]

B. G. Wang, C. P. Lohmann, I. Riemann, H. Schubert, K. J. Halbhuber, and K. König, “Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser,” J. Refract. Surg. 24(8), 833–839 (2008).
[PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

2007 (1)

I. Bahar, I. Kaiserman, G. E. Trope, and D. Rootman, “Non-penetrating deep sclerectomy for glaucoma surgery using the femtosecond laser: a laboratory model,” Br. J. Ophthalmol. 91(12), 1713–1714 (2007).
[Crossref] [PubMed]

2006 (1)

B. G. Wang and K. J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (3)

W. Watanabe, N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, “Femtosecond laser disruption of subcellular organelles in a living cell,” Opt. Express 12(18), 4203–4213 (2004).
[Crossref] [PubMed]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

K. Konig, B. Wang, O. Krauss, I. Riemann, H. Schubert, S. Kirste, and P. Fischer, “First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses,” Proc. SPIE 5314, 262–269 (2004).
[Crossref]

2003 (2)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Z. S. Sacks, R. M. Kurtz, T. Juhasz, G. Spooner, and G. A. Mouroua, “Subsurface photodisruption in human sclera: wavelength dependence,” Ophthalmic Surg. Lasers Imaging 34(2), 104–113 (2003).
[PubMed]

2002 (4)

Z. S. Sacks, R. M. Kurtz, T. Juhasz, and G. A. Mourau, “High precision subsurface photodisruption in human sclera,” J. Biomed. Opt. 7(3), 442–450 (2002).
[Crossref] [PubMed]

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold,” Proc. SPIE 4633, 23–37 (2002).
[Crossref]

K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
[Crossref] [PubMed]

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

2000 (1)

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

1996 (1)

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Ang, H. P.

A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
[Crossref] [PubMed]

Anjo, T.

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

Arakawa, N.

Bahar, I.

I. Bahar, I. Kaiserman, G. E. Trope, and D. Rootman, “Non-penetrating deep sclerectomy for glaucoma surgery using the femtosecond laser: a laboratory model,” Br. J. Ophthalmol. 91(12), 1713–1714 (2007).
[Crossref] [PubMed]

Barrandon, Y.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref] [PubMed]

Ben-Yakar, A.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Bolortuya, G.

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

Bor, Z.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Brocchini, S.

S. Georgoulas, A. Dahlmann-Noor, S. Brocchini, and P. T. Khaw, “Modulation of wound healing during and after glaucoma surgery,” Prog. Brain Res. 173, 237–254 (2008).
[Crossref] [PubMed]

Bron, W. E.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Brückner, K.

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

Bühren, J.

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Butler, D. L.

D. X. Hou, D. L. Butler, L. M. He, and H. Y. Zheng, “Experimental study on low pulse energy processing with femtosecond lasers for glaucoma treatment,” Lasers Med. Sci. 24(2), 151–154 (2009).
[Crossref] [PubMed]

Cao, Y. J.

H. He, S. Y. Li, S. Y. Wang, M. L. Hu, Y. J. Cao, and C. Y. Wang, “Manipulation of cellular light from green fluorescent protein by a femtosecond laser,” Nat. Photonics 6(10), 651–656 (2012).
[Crossref]

Chai, D.

D. Chai, G. Chaudhary, E. Mikula, H. Sun, R. Kurtz, and T. Juhasz, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref] [PubMed]

Chan, K. T.

Chaudhary, G.

D. Chai, G. Chaudhary, E. Mikula, H. Sun, R. Kurtz, and T. Juhasz, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref] [PubMed]

Chisholm, A. D.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Choi, M.

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

Cinar, H.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Cinar, H. N.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Cringle, S. J.

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

Dahlmann-Noor, A.

S. Georgoulas, A. Dahlmann-Noor, S. Brocchini, and P. T. Khaw, “Modulation of wound healing during and after glaucoma surgery,” Prog. Brain Res. 173, 237–254 (2008).
[Crossref] [PubMed]

Dai, N.

X. Yang, N. Dai, H. Long, P. Lu, W. Li, and F. Jiang, “Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study,” Opt. Lasers Eng. 48(7-8), 806–810 (2010).
[Crossref]

Dai, N. L.

Y. Shi, X. B. Yang, N. L. Dai, H. Long, P. X. Lu, L. Jin, and F. G. Jiang, “External sclerostomy with the femtosecond laser versus a surgical knife in rabbits,” Int. J. Ophthalmol. 5(3), 258–265 (2012).
[PubMed]

Ding, L.

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Drommer, W.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Ebihara, A.

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

Eldeniz, Y. B.

Erdogan, M.

Ertmer, W.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Fischer, P.

K. Konig, B. Wang, O. Krauss, I. Riemann, H. Schubert, S. Kirste, and P. Fischer, “First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses,” Proc. SPIE 5314, 262–269 (2004).
[Crossref]

Fukui, K.

Géneaux, R.

Georgoulas, S.

S. Georgoulas, A. Dahlmann-Noor, S. Brocchini, and P. T. Khaw, “Modulation of wound healing during and after glaucoma surgery,” Prog. Brain Res. 173, 237–254 (2008).
[Crossref] [PubMed]

Günther, A.

Guo, W.

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

Gürel, K.

Gurtner, G. C.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref] [PubMed]

Halbhuber, K. J.

B. G. Wang, C. P. Lohmann, I. Riemann, H. Schubert, K. J. Halbhuber, and K. König, “Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser,” J. Refract. Surg. 24(8), 833–839 (2008).
[PubMed]

B. G. Wang and K. J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[Crossref] [PubMed]

Hansen, A.

He, H.

H. He, S. Y. Li, S. Y. Wang, M. L. Hu, Y. J. Cao, and C. Y. Wang, “Manipulation of cellular light from green fluorescent protein by a femtosecond laser,” Nat. Photonics 6(10), 651–656 (2012).
[Crossref]

H. He, S. K. Kong, R. K. Lee, Y. K. Suen, and K. T. Chan, “Targeted photoporation and transfection in human HepG2 cells by a fiber femtosecond laser at 1554 nm,” Opt. Lett. 33(24), 2961–2963 (2008).
[Crossref] [PubMed]

He, L. M.

D. X. Hou, D. L. Butler, L. M. He, and H. Y. Zheng, “Experimental study on low pulse energy processing with femtosecond lasers for glaucoma treatment,” Lasers Med. Sci. 24(2), 151–154 (2009).
[Crossref] [PubMed]

Heisterkamp, A.

A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber, “Pulse energy dependence of subcellular dissection by femtosecond laser pulses,” Opt. Express 13(10), 3690–3696 (2005).
[Crossref] [PubMed]

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Hetzel, U.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Higashi, T.

Hild, M.

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

Hou, D. X.

D. X. Hou, D. L. Butler, L. M. He, and H. Y. Zheng, “Experimental study on low pulse energy processing with femtosecond lasers for glaucoma treatment,” Lasers Med. Sci. 24(2), 151–154 (2009).
[Crossref] [PubMed]

House, P.

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

Hu, M. L.

H. He, S. Y. Li, S. Y. Wang, M. L. Hu, Y. J. Cao, and C. Y. Wang, “Manipulation of cellular light from green fluorescent protein by a femtosecond laser,” Nat. Photonics 6(10), 651–656 (2012).
[Crossref]

Hüttmann, G.

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold,” Proc. SPIE 4633, 23–37 (2002).
[Crossref]

Huxlin, K. R.

L. Xu, W. H. Knox, and K. R. Huxlin, “Exogenous and endogenous two-photon absorption for Intra-tissue Refractive Index Shaping (IRIS) in live corneal tissue [Invited],” Opt. Mater. Express 1(7), 1159–1164 (2011).
[Crossref]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Ichinose, S.

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

Ilday, F. O.

Ingber, D. E.

Isobe, K.

Itoh, K.

Jiang, F.

X. Yang, N. Dai, H. Long, P. Lu, W. Li, and F. Jiang, “Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study,” Opt. Lasers Eng. 48(7-8), 806–810 (2010).
[Crossref]

Jiang, F. G.

Y. Shi, X. B. Yang, N. L. Dai, H. Long, P. X. Lu, L. Jin, and F. G. Jiang, “External sclerostomy with the femtosecond laser versus a surgical knife in rabbits,” Int. J. Ophthalmol. 5(3), 258–265 (2012).
[PubMed]

Jin, L.

Y. Shi, X. B. Yang, N. L. Dai, H. Long, P. X. Lu, L. Jin, and F. G. Jiang, “External sclerostomy with the femtosecond laser versus a surgical knife in rabbits,” Int. J. Ophthalmol. 5(3), 258–265 (2012).
[PubMed]

Jin, Y.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Jonescu-Cuypers, C.

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

Juhasz, T.

D. Chai, G. Chaudhary, E. Mikula, H. Sun, R. Kurtz, and T. Juhasz, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref] [PubMed]

Z. S. Sacks, R. M. Kurtz, T. Juhasz, G. Spooner, and G. A. Mouroua, “Subsurface photodisruption in human sclera: wavelength dependence,” Ophthalmic Surg. Lasers Imaging 34(2), 104–113 (2003).
[PubMed]

Z. S. Sacks, R. M. Kurtz, T. Juhasz, and G. A. Mourau, “High precision subsurface photodisruption in human sclera,” J. Biomed. Opt. 7(3), 442–450 (2002).
[Crossref] [PubMed]

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Kahook, M. Y.

L. K. Seibold, M. B. Sherwood, and M. Y. Kahook, “Wound modulation after filtration surgery,” Surv. Ophthalmol. 57(6), 530–550 (2012).
[Crossref] [PubMed]

Kaiserman, I.

I. Bahar, I. Kaiserman, G. E. Trope, and D. Rootman, “Non-penetrating deep sclerectomy for glaucoma surgery using the femtosecond laser: a laboratory model,” Br. J. Ophthalmol. 91(12), 1713–1714 (2007).
[Crossref] [PubMed]

Kastis, G. A.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Kawashima, N.

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

Khaw, P. T.

S. Georgoulas, A. Dahlmann-Noor, S. Brocchini, and P. T. Khaw, “Modulation of wound healing during and after glaucoma surgery,” Prog. Brain Res. 173, 237–254 (2008).
[Crossref] [PubMed]

Kirste, S.

K. Konig, B. Wang, O. Krauss, I. Riemann, H. Schubert, S. Kirste, and P. Fischer, “First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses,” Proc. SPIE 5314, 262–269 (2004).
[Crossref]

Knox, W. H.

L. Xu, W. H. Knox, and K. R. Huxlin, “Exogenous and endogenous two-photon absorption for Intra-tissue Refractive Index Shaping (IRIS) in live corneal tissue [Invited],” Opt. Mater. Express 1(7), 1159–1164 (2011).
[Crossref]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Koenig, K.

Kokuzawa, C.

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

Kong, S. K.

Konig, K.

K. Konig, B. Wang, O. Krauss, I. Riemann, H. Schubert, S. Kirste, and P. Fischer, “First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses,” Proc. SPIE 5314, 262–269 (2004).
[Crossref]

König, K.

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

B. G. Wang, C. P. Lohmann, I. Riemann, H. Schubert, K. J. Halbhuber, and K. König, “Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser,” J. Refract. Surg. 24(8), 833–839 (2008).
[PubMed]

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

Krause, M.

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

Krauss, O.

K. Konig, B. Wang, O. Krauss, I. Riemann, H. Schubert, S. Kirste, and P. Fischer, “First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses,” Proc. SPIE 5314, 262–269 (2004).
[Crossref]

K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
[Crossref] [PubMed]

Krüger, A.

Kullman, G.

G. Kullman and R. Pineda, “Alternative applications of the femtosecond laser in ophthalmology,” Semin. Ophthalmol. 25(5-6), 256–264 (2010).
[Crossref] [PubMed]

Kumar, S.

Kurtz, R.

D. Chai, G. Chaudhary, E. Mikula, H. Sun, R. Kurtz, and T. Juhasz, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref] [PubMed]

Kurtz, R. M.

Z. S. Sacks, R. M. Kurtz, T. Juhasz, G. Spooner, and G. A. Mouroua, “Subsurface photodisruption in human sclera: wavelength dependence,” Ophthalmic Surg. Lasers Imaging 34(2), 104–113 (2003).
[PubMed]

Z. S. Sacks, R. M. Kurtz, T. Juhasz, and G. A. Mourau, “High precision subsurface photodisruption in human sclera,” J. Biomed. Opt. 7(3), 442–450 (2002).
[Crossref] [PubMed]

Lee, R. K.

Li, S. Y.

H. He, S. Y. Li, S. Y. Wang, M. L. Hu, Y. J. Cao, and C. Y. Wang, “Manipulation of cellular light from green fluorescent protein by a femtosecond laser,” Nat. Photonics 6(10), 651–656 (2012).
[Crossref]

Li, W.

X. Yang, N. Dai, H. Long, P. Lu, W. Li, and F. Jiang, “Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study,” Opt. Lasers Eng. 48(7-8), 806–810 (2010).
[Crossref]

Liu, Y. C.

A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
[Crossref] [PubMed]

Lohmann, C. P.

B. G. Wang, C. P. Lohmann, I. Riemann, H. Schubert, K. J. Halbhuber, and K. König, “Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser,” J. Refract. Surg. 24(8), 833–839 (2008).
[PubMed]

Long, H.

Y. Shi, X. B. Yang, N. L. Dai, H. Long, P. X. Lu, L. Jin, and F. G. Jiang, “External sclerostomy with the femtosecond laser versus a surgical knife in rabbits,” Int. J. Ophthalmol. 5(3), 258–265 (2012).
[PubMed]

X. Yang, N. Dai, H. Long, P. Lu, W. Li, and F. Jiang, “Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study,” Opt. Lasers Eng. 48(7-8), 806–810 (2010).
[Crossref]

Longaker, M. T.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref] [PubMed]

Löw, U.

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

Lu, P.

X. Yang, N. Dai, H. Long, P. Lu, W. Li, and F. Jiang, “Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study,” Opt. Lasers Eng. 48(7-8), 806–810 (2010).
[Crossref]

Lu, P. X.

Y. Shi, X. B. Yang, N. L. Dai, H. Long, P. X. Lu, L. Jin, and F. G. Jiang, “External sclerostomy with the femtosecond laser versus a surgical knife in rabbits,” Int. J. Ophthalmol. 5(3), 258–265 (2012).
[PubMed]

Lubatschowski, H.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Lwin, N. C.

A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
[Crossref] [PubMed]

Maatz, G.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Malta, J. B.

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

Matsunaga, S.

Maxwell, I. Z.

Mazur, E.

Mehta, J. S.

A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
[Crossref] [PubMed]

Mestres, P.

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

Mikula, E.

D. Chai, G. Chaudhary, E. Mikula, H. Sun, R. Kurtz, and T. Juhasz, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref] [PubMed]

Morgan, W. H.

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

Mourau, G. A.

Z. S. Sacks, R. M. Kurtz, T. Juhasz, and G. A. Mourau, “High precision subsurface photodisruption in human sclera,” J. Biomed. Opt. 7(3), 442–450 (2002).
[Crossref] [PubMed]

Mouroua, G. A.

Z. S. Sacks, R. M. Kurtz, T. Juhasz, G. Spooner, and G. A. Mouroua, “Subsurface photodisruption in human sclera: wavelength dependence,” Ophthalmic Surg. Lasers Imaging 34(2), 104–113 (2003).
[PubMed]

Nagy, L. J.

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Nickerson, J. A.

Noack, J.

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold,” Proc. SPIE 4633, 23–37 (2002).
[Crossref]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold,” Proc. SPIE 4633, 23–37 (2002).
[Crossref]

Pineda, R.

G. Kullman and R. Pineda, “Alternative applications of the femtosecond laser in ophthalmology,” Semin. Ophthalmol. 25(5-6), 256–264 (2010).
[Crossref] [PubMed]

Riau, A. K.

A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
[Crossref] [PubMed]

Riemann, I.

B. G. Wang, C. P. Lohmann, I. Riemann, H. Schubert, K. J. Halbhuber, and K. König, “Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser,” J. Refract. Surg. 24(8), 833–839 (2008).
[PubMed]

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

K. Konig, B. Wang, O. Krauss, I. Riemann, H. Schubert, S. Kirste, and P. Fischer, “First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses,” Proc. SPIE 5314, 262–269 (2004).
[Crossref]

K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
[Crossref] [PubMed]

Ripken, T.

Rootman, D.

I. Bahar, I. Kaiserman, G. E. Trope, and D. Rootman, “Non-penetrating deep sclerectomy for glaucoma surgery using the femtosecond laser: a laboratory model,” Br. J. Ophthalmol. 91(12), 1713–1714 (2007).
[Crossref] [PubMed]

Sacks, Z. S.

Z. S. Sacks, R. M. Kurtz, T. Juhasz, G. Spooner, and G. A. Mouroua, “Subsurface photodisruption in human sclera: wavelength dependence,” Ophthalmic Surg. Lasers Imaging 34(2), 104–113 (2003).
[PubMed]

Z. S. Sacks, R. M. Kurtz, T. Juhasz, and G. A. Mourau, “High precision subsurface photodisruption in human sclera,” J. Biomed. Opt. 7(3), 442–450 (2002).
[Crossref] [PubMed]

Saegusa, H.

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

Schubert, H.

B. G. Wang, C. P. Lohmann, I. Riemann, H. Schubert, K. J. Halbhuber, and K. König, “Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser,” J. Refract. Surg. 24(8), 833–839 (2008).
[PubMed]

K. Konig, B. Wang, O. Krauss, I. Riemann, H. Schubert, S. Kirste, and P. Fischer, “First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses,” Proc. SPIE 5314, 262–269 (2004).
[Crossref]

Seibold, L. K.

L. K. Seibold, M. B. Sherwood, and M. Y. Kahook, “Wound modulation after filtration surgery,” Surv. Ophthalmol. 57(6), 530–550 (2012).
[Crossref] [PubMed]

Seitz, B.

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

Sherwood, M. B.

L. K. Seibold, M. B. Sherwood, and M. Y. Kahook, “Wound modulation after filtration surgery,” Surv. Ophthalmol. 57(6), 530–550 (2012).
[Crossref] [PubMed]

Shi, Y.

Y. Shi, X. B. Yang, N. L. Dai, H. Long, P. X. Lu, L. Jin, and F. G. Jiang, “External sclerostomy with the femtosecond laser versus a surgical knife in rabbits,” Int. J. Ophthalmol. 5(3), 258–265 (2012).
[PubMed]

Soong, H. K.

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

Spooner, G.

Z. S. Sacks, R. M. Kurtz, T. Juhasz, G. Spooner, and G. A. Mouroua, “Subsurface photodisruption in human sclera: wavelength dependence,” Ophthalmic Surg. Lasers Imaging 34(2), 104–113 (2003).
[PubMed]

Su, E. N.

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

Suárez, C.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Suda, H.

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

Suen, Y. K.

Sun, H.

D. Chai, G. Chaudhary, E. Mikula, H. Sun, R. Kurtz, and T. Juhasz, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref] [PubMed]

Sun, X.

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

Tan, D. T.

A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
[Crossref] [PubMed]

Tan, N. Y.

A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
[Crossref] [PubMed]

Tazebay, U. H.

Tirlapur, U. K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

Toropygin, S.

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

Trope, G. E.

I. Bahar, I. Kaiserman, G. E. Trope, and D. Rootman, “Non-penetrating deep sclerectomy for glaucoma surgery using the femtosecond laser: a laboratory model,” Br. J. Ophthalmol. 91(12), 1713–1714 (2007).
[Crossref] [PubMed]

Underwood, J. M.

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold,” Proc. SPIE 4633, 23–37 (2002).
[Crossref]

Wang, B.

K. Konig, B. Wang, O. Krauss, I. Riemann, H. Schubert, S. Kirste, and P. Fischer, “First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses,” Proc. SPIE 5314, 262–269 (2004).
[Crossref]

Wang, B. G.

B. G. Wang, C. P. Lohmann, I. Riemann, H. Schubert, K. J. Halbhuber, and K. König, “Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser,” J. Refract. Surg. 24(8), 833–839 (2008).
[PubMed]

B. G. Wang and K. J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[Crossref] [PubMed]

Wang, C. Y.

H. He, S. Y. Li, S. Y. Wang, M. L. Hu, Y. J. Cao, and C. Y. Wang, “Manipulation of cellular light from green fluorescent protein by a femtosecond laser,” Nat. Photonics 6(10), 651–656 (2012).
[Crossref]

Wang, S. Y.

H. He, S. Y. Li, S. Y. Wang, M. L. Hu, Y. J. Cao, and C. Y. Wang, “Manipulation of cellular light from green fluorescent protein by a femtosecond laser,” Nat. Photonics 6(10), 651–656 (2012).
[Crossref]

Watanabe, S.

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

Watanabe, W.

Welling, H.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Werner, S.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref] [PubMed]

Xu, L.

Yam, G. H.

A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
[Crossref] [PubMed]

Yang, X.

X. Yang, N. Dai, H. Long, P. Lu, W. Li, and F. Jiang, “Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study,” Opt. Lasers Eng. 48(7-8), 806–810 (2010).
[Crossref]

Yang, X. B.

Y. Shi, X. B. Yang, N. L. Dai, H. Long, P. X. Lu, L. Jin, and F. G. Jiang, “External sclerostomy with the femtosecond laser versus a surgical knife in rabbits,” Int. J. Ophthalmol. 5(3), 258–265 (2012).
[PubMed]

Yanik, M. F.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

Yavas, S.

Yu, D. Y.

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

Yu, P. K.

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

Yu, X.

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

Yun, S. H.

Zheng, H. Y.

D. X. Hou, D. L. Butler, L. M. He, and H. Y. Zheng, “Experimental study on low pulse energy processing with femtosecond lasers for glaucoma treatment,” Lasers Med. Sci. 24(2), 151–154 (2009).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).
[Crossref] [PubMed]

Ann. Anat. (1)

B. G. Wang and K. J. Halbhuber, “Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers,” Ann. Anat. 188(5), 395–409 (2006).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

I. Bahar, I. Kaiserman, G. E. Trope, and D. Rootman, “Non-penetrating deep sclerectomy for glaucoma surgery using the femtosecond laser: a laboratory model,” Br. J. Ophthalmol. 91(12), 1713–1714 (2007).
[Crossref] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Curr. Eye Res. (1)

M. Hild, M. Krause, I. Riemann, P. Mestres, S. Toropygin, U. Löw, K. Brückner, B. Seitz, C. Jonescu-Cuypers, and K. König, “Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study,” Curr. Eye Res. 33(4), 351–363 (2008).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,” Graefes Arch. Clin. Exp. Ophthalmol. 238(1), 33–39 (2000).
[Crossref] [PubMed]

Int. J. Ophthalmol. (1)

Y. Shi, X. B. Yang, N. L. Dai, H. Long, P. X. Lu, L. Jin, and F. G. Jiang, “External sclerostomy with the femtosecond laser versus a surgical knife in rabbits,” Int. J. Ophthalmol. 5(3), 258–265 (2012).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

A. K. Riau, Y. C. Liu, N. C. Lwin, H. P. Ang, N. Y. Tan, G. H. Yam, D. T. Tan, and J. S. Mehta, “Comparative study of nJ- and μJ-energy level femtosecond lasers: evaluation of flap adhesion strength, stromal bed quality, and tissue responses,” Invest. Ophthalmol. Vis. Sci. 55(5), 3186–3194 (2014).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Z. S. Sacks, R. M. Kurtz, T. Juhasz, and G. A. Mourau, “High precision subsurface photodisruption in human sclera,” J. Biomed. Opt. 7(3), 442–450 (2002).
[Crossref] [PubMed]

J. Biophotonics (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics 2(10), 557–572 (2009).
[Crossref] [PubMed]

J. Refract. Surg. (1)

B. G. Wang, C. P. Lohmann, I. Riemann, H. Schubert, K. J. Halbhuber, and K. König, “Multiphoton-mediated corneal flap generation using the 80 MHz nanojoule femtosecond near-infrared laser,” J. Refract. Surg. 24(8), 833–839 (2008).
[PubMed]

Lasers Med. Sci. (1)

D. X. Hou, D. L. Butler, L. M. He, and H. Y. Zheng, “Experimental study on low pulse energy processing with femtosecond lasers for glaucoma treatment,” Lasers Med. Sci. 24(2), 151–154 (2009).
[Crossref] [PubMed]

Lasers Surg. Med. (2)

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

D. Chai, G. Chaudhary, E. Mikula, H. Sun, R. Kurtz, and T. Juhasz, “In vivo femtosecond laser subsurface scleral treatment in rabbit eyes,” Lasers Surg. Med. 42(7), 647–651 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

H. He, S. Y. Li, S. Y. Wang, M. L. Hu, Y. J. Cao, and C. Y. Wang, “Manipulation of cellular light from green fluorescent protein by a femtosecond laser,” Nat. Photonics 6(10), 651–656 (2012).
[Crossref]

Nature (3)

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432(7019), 822 (2004).
[Crossref] [PubMed]

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature 453(7193), 314–321 (2008).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

Z. S. Sacks, R. M. Kurtz, T. Juhasz, G. Spooner, and G. A. Mouroua, “Subsurface photodisruption in human sclera: wavelength dependence,” Ophthalmic Surg. Lasers Imaging 34(2), 104–113 (2003).
[PubMed]

Opt. Express (4)

Opt. Lasers Eng. (1)

X. Yang, N. Dai, H. Long, P. Lu, W. Li, and F. Jiang, “Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study,” Opt. Lasers Eng. 48(7-8), 806–810 (2010).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Photomed. Laser Surg. (1)

G. Bolortuya, A. Ebihara, S. Ichinose, S. Watanabe, T. Anjo, C. Kokuzawa, H. Saegusa, N. Kawashima, and H. Suda, “Effects of dentin surface modifications treated with Er:YAG and Nd:YAG laser irradiation on fibroblast cell adhesion,” Photomed. Laser Surg. 30(2), 63–70 (2012).
[Crossref] [PubMed]

Proc. SPIE (2)

A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, “Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold,” Proc. SPIE 4633, 23–37 (2002).
[Crossref]

K. Konig, B. Wang, O. Krauss, I. Riemann, H. Schubert, S. Kirste, and P. Fischer, “First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses,” Proc. SPIE 5314, 262–269 (2004).
[Crossref]

Prog. Brain Res. (1)

S. Georgoulas, A. Dahlmann-Noor, S. Brocchini, and P. T. Khaw, “Modulation of wound healing during and after glaucoma surgery,” Prog. Brain Res. 173, 237–254 (2008).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

D. Y. Yu, W. H. Morgan, X. Sun, E. N. Su, S. J. Cringle, P. K. Yu, P. House, W. Guo, and X. Yu, “The critical role of the conjunctiva in glaucoma filtration surgery,” Prog. Retin. Eye Res. 28(5), 303–328 (2009).
[Crossref] [PubMed]

Semin. Ophthalmol. (1)

G. Kullman and R. Pineda, “Alternative applications of the femtosecond laser in ophthalmology,” Semin. Ophthalmol. 25(5-6), 256–264 (2010).
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

L. K. Seibold, M. B. Sherwood, and M. Y. Kahook, “Wound modulation after filtration surgery,” Surv. Ophthalmol. 57(6), 530–550 (2012).
[Crossref] [PubMed]

Other (1)

L. Xu, K. R. Huxlin, M. DeMagistris, N. Wang, L. Ding, and W. H. Knox, “Non-invasive Blue Intra-tissue Refractive Index Shaping (IRIS) In Living, Excised Cornea,” in Frontiers in Optics 2010/Laser Science XXVI, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPA11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The experimental setup of processing system.
Fig. 2
Fig. 2 Two types of scanning patterns (a) Zoom scanning; (b) Raster scanning. The arrows represent the direction of laser scan.
Fig. 3
Fig. 3 (a-c) CCD micrographs of sclera surface after linear scanning by 15 nJ, 5 nJ and 7 nJ pulses respectively; (d) SEM image of cross section of incisions created by NFP (the exposure time was 10 ms) with pulse energies ranging from 5 to 35 nJ.
Fig. 4
Fig. 4 Cross section SEM images of NFP-induced linear incisions (a-c) and the correlation between laser parameters and the incision depth (d-f). Arrow: incisions created by NFP. (a) Pulse energies were 10 nJ, 20 nJ, 30 nJ and 40 nJ from left to right (the focal depth was 0 μm subsurface, the exposure time was 50 ms); (b) Focal depths were 60 μm, 50 μm, 40 μm, 30 μm, 20 μm below the surface from left to right (45 nJ pulse energy, 10 ms exposure time); (c) The exposure time was 10 ms, 12.5 ms, 17 ms, 25 ms and 50 ms from left to right (the pulse energy was 45 nJ, the focal depth was 60 μm subsurface); (d) The positive correlation obtained between the depths of the incision and pulse energies (r = 0.9944, P = 0.0028); (e) The negative correlation found between incision depths and focal depths (r = −0.9783, P = 0.0019); (f) The positive correlation obtained between depths of the incision and exposure times (r = 0.9056, P = 0.0083).
Fig. 5
Fig. 5 NFP created incisions in zoom scanning pattern. Laser parameters: the exposure time was 25 ms, the focal depth of first line was 10 μm subsurface, the focal depth of last line was 45 μm subsurface, distance of two adjacent lines was 5 μm; (a-c) The pulse energy was 10 nJ, 20 nJ and 30 nJ respectively.
Fig. 6
Fig. 6 Raster scanning (the pulse energy was 30 nJ, the exposure time was 50 ms, the focal depth was 10 μm subsurface). (a) Cross section of the incision; (b) Plane observation of the incision.
Fig. 7
Fig. 7 Transscleral spot ablation image. (the pulse energy was 30 nJ, the exposure time was 100 ms, the focal depth was 10 μm).
Fig. 8
Fig. 8 The CCD image of the intratissue bubble induced by NFP with 30 nJ pulse energy and 50 ms exposure time in the focal region.

Tables (1)

Tables Icon

Table 1 Differences of Parameters between NFP and MFP in Achieving Similar Incision Depth

Metrics