Abstract

Imaging resolution of complementary metal oxide semiconductor (CMOS) image sensor (CIS) keeps increasing to approximately 7k × 4k. As a result, the pixel size shrinks down to sub-2μm, which greatly increases the spatial optical crosstalk. Recently, plasmonic color filter was proposed as an alternative to conventional colorant pigmented ones. However, there is little work on its size effect and the spatial optical crosstalk in a model of CIS. By numerical simulation, we investigate the size effect of nanocross array plasmonic color filters and analyze the spatial optical crosstalk of each pixel in a Bayer array of a CIS with a pixel size of 1μm. It is found that the small pixel size deteriorates the filtering performance of nanocross color filters and induces substantial spatial color crosstalk. By integrating the plasmonic filters in the low Metal layer in standard CMOS process, the crosstalk reduces significantly, which is compatible to pigmented filters in a state-of-the-art backside illumination CIS.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficiency enhancement in a backside illuminated 1.12 μm pixel CMOS image sensor via parabolic color filters

Jong-Kwon Lee, Ahreum Kim, Dong-Wan Kang, and Byung Yang Lee
Opt. Express 24(14) 16027-16036 (2016)

Color filters including infrared cut-off integrated on CMOS image sensor

Laurent Frey, Pascale Parrein, Jacques Raby, Catherine Pellé, Didier Hérault, Michel Marty, and Jean Michailos
Opt. Express 19(14) 13073-13080 (2011)

Optical confinement methods for continued scaling of CMOS image sensor pixels

Christian C. Fesenmaier, Yijie Huo, and Peter B. Catrysse
Opt. Express 16(25) 20457-20470 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Gather, A. Kohnen, A. Falcou, H. Becker, and K. Meerholz, “Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography,” Adv. Funct. Mater. 17(2), 191–200 (2007).
    [Crossref]
  2. L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19(14), 13073–13080 (2011).
    [Crossref] [PubMed]
  3. S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. A. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7(3), 248–254 (2013).
    [Crossref]
  4. J. J. Cowan, “Aztec surface-relief volume diffractive structure,” J. Opt. Soc. Am. A 7(8), 1529–1544 (1990).
    [Crossref]
  5. Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
    [Crossref] [PubMed]
  6. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
    [Crossref] [PubMed]
  7. A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
    [Crossref] [PubMed]
  8. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
    [Crossref]
  9. M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
    [Crossref]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary opticaltransmission throughsub-wavelength holearrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  11. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
    [Crossref] [PubMed]
  12. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref] [PubMed]
  13. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
    [Crossref] [PubMed]
  14. K. Cheng, S. J. Wang, Z. G. Cui, Q. Q. Li, S. X. Dai, and Z. L. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett. 100(25), 253101 (2012).
    [Crossref]
  15. S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
    [Crossref] [PubMed]
  16. Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
    [Crossref]
  17. Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
    [Crossref]
  18. P. B. Catrysse and B. A. Wandell, “Integrated colour pixels in 0.18μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20(12), 2293–2306 (2003).
    [Crossref] [PubMed]
  19. C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
    [Crossref]
  20. G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron. Dev. 50(1), 4–11 (2003).
  21. C. C. Fesenmaier and P. B. Catrysse, “Mitigation of pixel scalingeffects in CMOS image sensors-crosstalk,” Proc. SPIE 6817, 681706 (2008).
    [Crossref]
  22. F. Zhang, J. Zhang, C. Yang, and X. Zhang, “Performance simulation and architecture optimization for CMOS image sensor pixels scaling down to 1.0um,” IEEE Trans. Electron. Dev. 57(4), 788–794 (2010).
    [Crossref]
  23. L. Wen, F. H. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Appl. Phys. Lett. 104(15), 151106 (2014).
    [Crossref]
  24. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [Crossref] [PubMed]
  25. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  26. L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett. 97(6), 061109 (2010).
    [Crossref]
  27. R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular stability of cross-shaped-hole arrays metallic filters,” Proc. SPIE 8809, 88092J (2013).
    [Crossref]
  28. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
    [Crossref]
  29. R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular and polarization properties of cross-holes nanostructured metallic filters,” Opt. Express 21(24), 29412–29424 (2013).
    [Crossref] [PubMed]
  30. E. D. Palik, Handbook of Optical Constants (Academic, 1998).
  31. F. Przybilla, A. Degiron, C. Genet, T. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
    [Crossref] [PubMed]
  32. F. V. Anantha and A. Taflove, “Efficient modeling of infinite scatterers using a generalized total-fieldscattered-field FDTD boundary partially embedded within PML,” IEEE Trans. Antenn. Propag. 50(10), 1337–1349 (2002).
    [Crossref]
  33. P. Colantoni, “Color Space Transformations,” http://faculty.kfupm.edu.sa/ICS/lahouari/Teaching/colorspacetransform-1.0.pdf
  34. R. Fontaine, “The State-of-the-Art of Mainstream CMOS Image Sensors,” http://www.chipworks.com/sites/default/files/Fontaine_0.1_The%20State-of-the Art%20of%20Mainstream%20CMOS%20Image%20Sensors.pdf .
  35. R. Fontaine, “A Review of the 1.4 µm Pixel Generation,” http://www.imagesensors.org/Past%20Workshops/2011%20Workshop/2011%20Papers/R02_Fontaine_Review.pdf .

2014 (2)

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

L. Wen, F. H. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Appl. Phys. Lett. 104(15), 151106 (2014).
[Crossref]

2013 (6)

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular stability of cross-shaped-hole arrays metallic filters,” Proc. SPIE 8809, 88092J (2013).
[Crossref]

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. A. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7(3), 248–254 (2013).
[Crossref]

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular and polarization properties of cross-holes nanostructured metallic filters,” Opt. Express 21(24), 29412–29424 (2013).
[Crossref] [PubMed]

2012 (5)

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

K. Cheng, S. J. Wang, Z. G. Cui, Q. Q. Li, S. X. Dai, and Z. L. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett. 100(25), 253101 (2012).
[Crossref]

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

2011 (2)

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

L. Frey, P. Parrein, J. Raby, C. Pellé, D. Hérault, M. Marty, and J. Michailos, “Color filters including infrared cut-off integrated on CMOS image sensor,” Opt. Express 19(14), 13073–13080 (2011).
[Crossref] [PubMed]

2010 (3)

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett. 97(6), 061109 (2010).
[Crossref]

F. Zhang, J. Zhang, C. Yang, and X. Zhang, “Performance simulation and architecture optimization for CMOS image sensor pixels scaling down to 1.0um,” IEEE Trans. Electron. Dev. 57(4), 788–794 (2010).
[Crossref]

2008 (3)

C. C. Fesenmaier and P. B. Catrysse, “Mitigation of pixel scalingeffects in CMOS image sensors-crosstalk,” Proc. SPIE 6817, 681706 (2008).
[Crossref]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

F. Przybilla, A. Degiron, C. Genet, T. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[Crossref] [PubMed]

2007 (3)

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15(23), 15457–15463 (2007).
[Crossref] [PubMed]

M. C. Gather, A. Kohnen, A. Falcou, H. Becker, and K. Meerholz, “Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography,” Adv. Funct. Mater. 17(2), 191–200 (2007).
[Crossref]

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

2004 (1)

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

2003 (2)

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron. Dev. 50(1), 4–11 (2003).

P. B. Catrysse and B. A. Wandell, “Integrated colour pixels in 0.18μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20(12), 2293–2306 (2003).
[Crossref] [PubMed]

2002 (1)

F. V. Anantha and A. Taflove, “Efficient modeling of infinite scatterers using a generalized total-fieldscattered-field FDTD boundary partially embedded within PML,” IEEE Trans. Antenn. Propag. 50(10), 1337–1349 (2002).
[Crossref]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary opticaltransmission throughsub-wavelength holearrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1990 (1)

Agranov, G.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron. Dev. 50(1), 4–11 (2003).

Albrektsen, O.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Anantha, F. V.

F. V. Anantha and A. Taflove, “Efficient modeling of infinite scatterers using a generalized total-fieldscattered-field FDTD boundary partially embedded within PML,” IEEE Trans. Antenn. Propag. 50(10), 1337–1349 (2002).
[Crossref]

Atwater, H. A.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Becker, H.

M. C. Gather, A. Kohnen, A. Falcou, H. Becker, and K. Meerholz, “Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography,” Adv. Funct. Mater. 17(2), 191–200 (2007).
[Crossref]

Berezin, V.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron. Dev. 50(1), 4–11 (2003).

Boutami, S.

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular stability of cross-shaped-hole arrays metallic filters,” Proc. SPIE 8809, 88092J (2013).
[Crossref]

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular and polarization properties of cross-holes nanostructured metallic filters,” Opt. Express 21(24), 29412–29424 (2013).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Bravo-Abad, J.

Burgos, S. P.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Carson, J. J.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

Catrysse, P. B.

C. C. Fesenmaier and P. B. Catrysse, “Mitigation of pixel scalingeffects in CMOS image sensors-crosstalk,” Proc. SPIE 6817, 681706 (2008).
[Crossref]

P. B. Catrysse and B. A. Wandell, “Integrated colour pixels in 0.18μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20(12), 2293–2306 (2003).
[Crossref] [PubMed]

Chang, Y. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Chen, C. Y.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Chen, Q.

L. Wen, F. H. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Appl. Phys. Lett. 104(15), 151106 (2014).
[Crossref]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

Cheng, K.

K. Cheng, S. J. Wang, Z. G. Cui, Q. Q. Li, S. X. Dai, and Z. L. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett. 100(25), 253101 (2012).
[Crossref]

Chitnis, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Collins, S.

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Cowan, J. J.

Cui, Z. G.

K. Cheng, S. J. Wang, Z. G. Cui, Q. Q. Li, S. X. Dai, and Z. L. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett. 100(25), 253101 (2012).
[Crossref]

Cumming, D. R. S.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

Dai, S. X.

K. Cheng, S. J. Wang, Z. G. Cui, Q. Q. Li, S. X. Dai, and Z. L. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett. 100(25), 253101 (2012).
[Crossref]

Das, D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

de Léon-Pérez, F.

Degiron, A.

Drysdale, T. D.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Du, Z. L.

K. Cheng, S. J. Wang, Z. G. Cui, Q. Q. Li, S. X. Dai, and Z. L. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett. 100(25), 253101 (2012).
[Crossref]

Ebbesen, T.

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary opticaltransmission throughsub-wavelength holearrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Falcou, A.

M. C. Gather, A. Kohnen, A. Falcou, H. Becker, and K. Meerholz, “Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography,” Adv. Funct. Mater. 17(2), 191–200 (2007).
[Crossref]

Fesenmaier, C. C.

C. C. Fesenmaier and P. B. Catrysse, “Mitigation of pixel scalingeffects in CMOS image sensors-crosstalk,” Proc. SPIE 6817, 681706 (2008).
[Crossref]

Frey, L.

Fujii, T.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. A. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7(3), 248–254 (2013).
[Crossref]

Fujikawa, H.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

García-Vidal, F. J.

F. Przybilla, A. Degiron, C. Genet, T. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Gather, M. C.

M. C. Gather, A. Kohnen, A. Falcou, H. Becker, and K. Meerholz, “Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography,” Adv. Funct. Mater. 17(2), 191–200 (2007).
[Crossref]

Genet, C.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary opticaltransmission throughsub-wavelength holearrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Girard-Desprolet, R.

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular and polarization properties of cross-holes nanostructured metallic filters,” Opt. Express 21(24), 29412–29424 (2013).
[Crossref] [PubMed]

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular stability of cross-shaped-hole arrays metallic filters,” Proc. SPIE 8809, 88092J (2013).
[Crossref]

Guo, L. J.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Hérault, D.

Hiramoto, M.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. A. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7(3), 248–254 (2013).
[Crossref]

Hollowell, A. E.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Hwang, S. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Ikeda, N.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Inoue, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Jiang, Y. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Kaminska, B.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

Kim, H. K.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Kim, S. H.

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Kohnen, A.

M. C. Gather, A. Kohnen, A. Falcou, H. Becker, and K. Meerholz, “Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography,” Adv. Funct. Mater. 17(2), 191–200 (2007).
[Crossref]

Koide, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Kong, J. T.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Koo, C. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Kuipers, L.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Lee, D. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Lee, H. S.

Lee, K. D.

Lee, K. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Lee, S. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Lee, S. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Lee, S. S.

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary opticaltransmission throughsub-wavelength holearrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Lhostis, S.

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular stability of cross-shaped-hole arrays metallic filters,” Proc. SPIE 8809, 88092J (2013).
[Crossref]

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular and polarization properties of cross-holes nanostructured metallic filters,” Opt. Express 21(24), 29412–29424 (2013).
[Crossref] [PubMed]

Li, Q. Q.

K. Cheng, S. J. Wang, Z. G. Cui, Q. Q. Li, S. X. Dai, and Z. L. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett. 100(25), 253101 (2012).
[Crossref]

Lin, L.

L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett. 97(6), 061109 (2010).
[Crossref]

Magnusson, R.

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

Martín-Moreno, L.

F. Przybilla, A. Degiron, C. Genet, T. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Marty, M.

Meerholz, K.

M. C. Gather, A. Kohnen, A. Falcou, H. Becker, and K. Meerholz, “Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography,” Adv. Funct. Mater. 17(2), 191–200 (2007).
[Crossref]

Michailos, J.

Miura, A.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Moon, C. R.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Najiminaini, M.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

Nakamura, T.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. A. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7(3), 248–254 (2013).
[Crossref]

Nishiwaki, S.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. A. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7(3), 248–254 (2013).
[Crossref]

Nomura, T.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Paik, K. H.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Park, D. C.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Park, Y. K.

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

Parrein, P.

Pellé, C.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pors, A.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Przybilla, F.

Raby, J.

Roberts, A.

L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett. 97(6), 061109 (2010).
[Crossref]

Roberts, A. S.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Sato, K.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Sugimoto, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Sun, F. H.

L. Wen, F. H. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Appl. Phys. Lett. 104(15), 151106 (2014).
[Crossref]

Suzuki, M. A.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. A. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7(3), 248–254 (2013).
[Crossref]

Taflove, A.

F. V. Anantha and A. Taflove, “Efficient modeling of infinite scatterers using a generalized total-fieldscattered-field FDTD boundary partially embedded within PML,” IEEE Trans. Antenn. Propag. 50(10), 1337–1349 (2002).
[Crossref]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary opticaltransmission throughsub-wavelength holearrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tsai, D. P.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Tsai, M. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Tsai, R. H.

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron. Dev. 50(1), 4–11 (2003).

Tsuya, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Vasefi, F.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

Vitrant, G.

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular and polarization properties of cross-holes nanostructured metallic filters,” Opt. Express 21(24), 29412–29424 (2013).
[Crossref] [PubMed]

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular stability of cross-shaped-hole arrays metallic filters,” Proc. SPIE 8809, 88092J (2013).
[Crossref]

Walls, K.

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

Wandell, B. A.

Wang, C. M.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Wang, S. J.

K. Cheng, S. J. Wang, Z. G. Cui, Q. Q. Li, S. X. Dai, and Z. L. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett. 100(25), 253101 (2012).
[Crossref]

Wen, L.

L. Wen, F. H. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Appl. Phys. Lett. 104(15), 151106 (2014).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary opticaltransmission throughsub-wavelength holearrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, Y. K.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Yang, C.

F. Zhang, J. Zhang, C. Yang, and X. Zhang, “Performance simulation and architecture optimization for CMOS image sensor pixels scaling down to 1.0um,” IEEE Trans. Electron. Dev. 57(4), 788–794 (2010).
[Crossref]

Ye, Y. H.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

Yokogawa, S.

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Yoon, Y. T.

Zhang, C.

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, J. Zhang, C. Yang, and X. Zhang, “Performance simulation and architecture optimization for CMOS image sensor pixels scaling down to 1.0um,” IEEE Trans. Electron. Dev. 57(4), 788–794 (2010).
[Crossref]

Zhang, J.

F. Zhang, J. Zhang, C. Yang, and X. Zhang, “Performance simulation and architecture optimization for CMOS image sensor pixels scaling down to 1.0um,” IEEE Trans. Electron. Dev. 57(4), 788–794 (2010).
[Crossref]

Zhang, X.

F. Zhang, J. Zhang, C. Yang, and X. Zhang, “Performance simulation and architecture optimization for CMOS image sensor pixels scaling down to 1.0um,” IEEE Trans. Electron. Dev. 57(4), 788–794 (2010).
[Crossref]

ACS Nano (1)

S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” ACS Nano 7(11), 10038–10047 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

M. C. Gather, A. Kohnen, A. Falcou, H. Becker, and K. Meerholz, “Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography,” Adv. Funct. Mater. 17(2), 191–200 (2007).
[Crossref]

Appl. Phys. Lett. (4)

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

L. Wen, F. H. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Appl. Phys. Lett. 104(15), 151106 (2014).
[Crossref]

L. Lin and A. Roberts, “Angle-robust resonances in cross-shaped aperture arrays,” Appl. Phys. Lett. 97(6), 061109 (2010).
[Crossref]

K. Cheng, S. J. Wang, Z. G. Cui, Q. Q. Li, S. X. Dai, and Z. L. Du, “Large-scale fabrication of plasmonic gold nanohole arrays for refractive index sensing at visible region,” Appl. Phys. Lett. 100(25), 253101 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photonics Technol. Lett. 24(3), 197–199 (2012).
[Crossref]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, “Angle-independent infrared filter assisted by localized surface plasmon polariton,” IEEE Photonics Technol. Lett. 20(13), 1103–1105 (2008).
[Crossref]

M. J. Uddin and R. Magnusson, “Efficient guided-mode-resonant tunable color filters,” IEEE Photonics Technol. Lett. 24(17), 1552–1554 (2012).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

F. V. Anantha and A. Taflove, “Efficient modeling of infinite scatterers using a generalized total-fieldscattered-field FDTD boundary partially embedded within PML,” IEEE Trans. Antenn. Propag. 50(10), 1337–1349 (2002).
[Crossref]

IEEE Trans. Electron. Dev. (2)

G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron. Dev. 50(1), 4–11 (2003).

F. Zhang, J. Zhang, C. Yang, and X. Zhang, “Performance simulation and architecture optimization for CMOS image sensor pixels scaling down to 1.0um,” IEEE Trans. Electron. Dev. 57(4), 788–794 (2010).
[Crossref]

J. Opt. Soc. Am. A (2)

Nano Lett. (2)

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. A. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7(3), 248–254 (2013).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary opticaltransmission throughsub-wavelength holearrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (5)

Phys. Rev. Lett. (2)

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Plasmonics (1)

Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7(4), 695–699 (2012).
[Crossref]

Proc. SPIE (3)

R. Girard-Desprolet, S. Boutami, S. Lhostis, and G. Vitrant, “Angular stability of cross-shaped-hole arrays metallic filters,” Proc. SPIE 8809, 88092J (2013).
[Crossref]

C. H. Koo, H. K. Kim, K. H. Paik, D. C. Park, K. H. Lee, Y. K. Park, C. R. Moon, S. H. Lee, S. H. Hwang, D. H. Lee, and J. T. Kong, “Improvement of crosstalk on 5M CMOS image sensor with 1.7x1.7μm,” Proc. SPIE 6471, 647115 (2007).
[Crossref]

C. C. Fesenmaier and P. B. Catrysse, “Mitigation of pixel scalingeffects in CMOS image sensors-crosstalk,” Proc. SPIE 6817, 681706 (2008).
[Crossref]

Sci. Rep. (2)

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref] [PubMed]

Y. K. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Other (4)

E. D. Palik, Handbook of Optical Constants (Academic, 1998).

P. Colantoni, “Color Space Transformations,” http://faculty.kfupm.edu.sa/ICS/lahouari/Teaching/colorspacetransform-1.0.pdf

R. Fontaine, “The State-of-the-Art of Mainstream CMOS Image Sensors,” http://www.chipworks.com/sites/default/files/Fontaine_0.1_The%20State-of-the Art%20of%20Mainstream%20CMOS%20Image%20Sensors.pdf .

R. Fontaine, “A Review of the 1.4 µm Pixel Generation,” http://www.imagesensors.org/Past%20Workshops/2011%20Workshop/2011%20Papers/R02_Fontaine_Review.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the nanocross array filter, hm = 200nm, ht = 200nm. Polarization averaged transmission spectra of (b) blue filters, p = 150nm, a = 120nm, b = 48nm, (c) green filters, p = 180nm, a = 140nm, b = 50nm, (d) red filters, p = 230nm, a = 180nm, b = 40nm at incident angle of 0-50°.
Fig. 2
Fig. 2 The size effect of a red color filters (p = 280nm, a = 200nm, b = 50nm) consisting of different numbers of nanocrosses at normal incidence. The black line is for the periodic array. 4, 9, 16, 36, 81and 100 nanocrosses occupy 0.6 × 0.6, 0.89 × 0.89, 1.18 × 1.18, 1.8 × 1.8, 2.66 × 2.66 and 2.96 × 2.96μm2, respectively.
Fig. 3
Fig. 3 (a) Schematic of the model used to calculate spatial optical crosstalk on CIS, (b) XZ cross-section diagram. The refractive index of SiN is 2. θ is the incident angle.
Fig. 4
Fig. 4 (a) Normalized crosstalk-free transmission spectra of integrated RGB filters in a Bayer array CIS with 1μm × 1μm pixels at h = 0.5μm for normal incidence. (b) Calculated color of RGB from the normalized spectra and the chromaticity coordinates of RGB in CIE 1931 chromaticity diagram.
Fig. 5
Fig. 5 Polarization averaged transmission of nanocross array (a) blue, (b) green, (c) red color filters in a Bayer array CIS for various incident angles. The pixel size is 1μm × 1μm and the filters are at h = 0.5μm. Each transmission is calculated with the other three pixels covered with metal shields.
Fig. 6
Fig. 6 (a)-(f) is the simulated electric field distribution of green and red pixels in the XZ plane at 520nm wavelength. (a)-(b) and (d)-(e) are results for 0° and 17° incidence of nanocross color filters, respectively. (c) and (f) are results of pigmented color filter for 0° and 17° incidence. (a) and (d) are for h = 0.5μm, (b), (c), (e) and (f) are at h = 2μm. Silicon photodiode is at the z = 0 plane.
Fig. 7
Fig. 7 The calculated colors of R, G and B pixels in CIS using both nanocross filters (a)-(f) and pigmented color filters (h)-(m). (a)-(d) and (h)-(k) are for 1μm × 1μm pixels. (e) and (l) are for 2μm × 2μm pixels. (a), (b), (h) and (i) are at h = 0.5μm. (c)-(e) and (j)-(l) are at h = 2μm. (f) and (m) are the reference colors of periodic nanocrosses filters and individual pigmented filters regardless of crosstalk.

Tables (1)

Tables Icon

Table 1 The spatial optical crosstalk of nanocross color filters and pigmented color filters with 0 and 17 degree incidence at different h = 0.5μm and 2μm for a CIS with 1μm × 1μm pixels. The thickness of the pigmented filters is 600nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

   λ peak = 2π ε m ε d ε m + ε d ( k cosϕ+i 2π a x +j 2π a x ) 2 + ( k sinϕi 2π a y +j 2π a y ) 2    
C Bi = 445 505 dλ T i 445 505 dλ T B  i=G,G1,R
C Gi = 515 575 dλ T i 515 575 dλ T G i=B,G1,R
C G1i = 515 575 dλ T i 515 575 dλ T G1 i=B,G,R
C Ri = 595 655 dλ T i 595 655 dλ T R  i=B,G,G1

Metrics