Abstract

The purpose of this work is to conceive the idea for using the gate dielectrics of floating-gate memory device (i.e., Au nanoparticle (AuNP) monolayer embedded within polymeric matrix) as a magnetic mirror, so as to harness the broadband light absorption of thin film optoelectronics. In particular, we systematically examined whether the versatile assembly of spherical AuNP monolayer can be indeed treated as the effective magnetic mirror for floating-gate graphene optoelectronic device. High amenability of the AuNP assembly with the large-area device fabrication procedures may make this strategy widely applicable to various thin film optoelectronic devices. Our study thereby advances the design of mirror for thin film optoelectronics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene on metal-insulator-metal-based plasmonic metamaterials at infrared wavelengths

Shinpei Ogawa, Masaaki Shimatani, Shoichiro Fukushima, Satoshi Okuda, and Kazuhiko Matsumoto
Opt. Express 26(5) 5665-5674 (2018)

Plasmon-enhanced broadband absorption of MoS2-based structure using Au nanoparticles

Kun Zhou, Jinlin Song, Lu Lu, Zixue Luo, and Qiang Cheng
Opt. Express 27(3) 2305-2316 (2019)

Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels

V. G. Kravets, O. P. Marshall, R. R. Nair, B. Thackray, A. Zhukov, J. Leng, and A. N. Grigorenko
Opt. Express 23(2) 1265-1275 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
    [Crossref] [PubMed]
  2. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
    [Crossref] [PubMed]
  3. K. X. Wang, J. R. Piper, and S. Fan, “Optical impedance transformer for transparent conducting electrodes,” Nano Lett. 14(5), 2755–2758 (2014).
    [Crossref] [PubMed]
  4. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
    [Crossref] [PubMed]
  5. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  6. J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18(5), 572–576 (2006).
    [Crossref]
  7. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
    [Crossref] [PubMed]
  8. M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
    [Crossref] [PubMed]
  9. D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D Metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
    [Crossref]
  10. D. F. Sievenpiper, L. Zhang, R. F. Jimenez, N. G. Broas, E. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
    [Crossref]
  11. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
    [Crossref] [PubMed]
  12. S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, “Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals,” Nano Lett. 15(4), 2542–2547 (2015).
    [Crossref] [PubMed]
  13. M.-K. Kim, S. H. Lee, M. Choi, B.-H. Ahn, N. Park, Y.-H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express 18(11), 11089–11096 (2010).
    [Crossref] [PubMed]
  14. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  15. M. Kim, S. Lee, J. Lee, D. K. Kim, Y. J. Hwang, G. Lee, G.-R. Yi, and Y. J. Song, “Deterministic assembly of metamolecules by atomic force microscope-enabled manipulation of ultra-smooth, super-spherical gold nanoparticles,” Opt. Express 23(10), 12766–12776 (2015).
    [PubMed]
  16. S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
    [Crossref] [PubMed]
  17. S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014).
    [Crossref]
  18. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  19. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]

2015 (2)

2014 (4)

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014).
[Crossref]

K. X. Wang, J. R. Piper, and S. Fan, “Optical impedance transformer for transparent conducting electrodes,” Nano Lett. 14(5), 2755–2758 (2014).
[Crossref] [PubMed]

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

2012 (3)

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

2011 (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[Crossref] [PubMed]

2010 (3)

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

M.-K. Kim, S. H. Lee, M. Choi, B.-H. Ahn, N. Park, Y.-H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express 18(11), 11089–11096 (2010).
[Crossref] [PubMed]

2009 (1)

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

2006 (1)

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18(5), 572–576 (2006).
[Crossref]

2005 (1)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

1999 (1)

D. F. Sievenpiper, L. Zhang, R. F. Jimenez, N. G. Broas, E. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

1998 (1)

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D Metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Ahn, B.-H.

Alexópolous, E.

D. F. Sievenpiper, L. Zhang, R. F. Jimenez, N. G. Broas, E. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

Avouris, P.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Baek, S.-W.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Black, L.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[Crossref] [PubMed]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Broas, N. G.

D. F. Sievenpiper, L. Zhang, R. F. Jimenez, N. G. Broas, E. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

Brongersma, M. L.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

Chilkoti, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Cho, C.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Cho, J. H.

S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, “Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals,” Nano Lett. 15(4), 2542–2547 (2015).
[Crossref] [PubMed]

Choi, C.-G.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M.-K. Kim, S. H. Lee, M. Choi, B.-H. Ahn, N. Park, Y.-H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express 18(11), 11089–11096 (2010).
[Crossref] [PubMed]

Choi, S.-Y.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Ciracì, C.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Cui, Y.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

de Waele, R.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Esfandyarpour, M.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Fan, S.

K. X. Wang, J. R. Piper, and S. Fan, “Optical impedance transformer for transparent conducting electrodes,” Nano Lett. 14(5), 2755–2758 (2014).
[Crossref] [PubMed]

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D Metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Garnett, E. C.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Gong, X.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18(5), 572–576 (2006).
[Crossref]

Hebbink, M.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[Crossref] [PubMed]

Heeger, A. J.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18(5), 572–576 (2006).
[Crossref]

Hill, R. T.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Hwang, E.

S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, “Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals,” Nano Lett. 15(4), 2542–2547 (2015).
[Crossref] [PubMed]

Hwang, Y. J.

Jang, S.

S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, “Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals,” Nano Lett. 15(4), 2542–2547 (2015).
[Crossref] [PubMed]

Jimenez, R. F.

D. F. Sievenpiper, L. Zhang, R. F. Jimenez, N. G. Broas, E. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

Joannopoulos, J. D.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D Metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Kim, D. K.

Kim, J.

S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014).
[Crossref]

Kim, J. Y.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18(5), 572–576 (2006).
[Crossref]

Kim, M.

Kim, M.-K.

Kim, S. H.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18(5), 572–576 (2006).
[Crossref]

Kim, T.-T.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Koschny, Th.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Lee, C.-H.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Lee, G.

Lee, H.-H.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18(5), 572–576 (2006).
[Crossref]

Lee, J.

Lee, J.-Y.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Lee, K.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18(5), 572–576 (2006).
[Crossref]

Lee, S.

S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, “Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals,” Nano Lett. 15(4), 2542–2547 (2015).
[Crossref] [PubMed]

M. Kim, S. Lee, J. Lee, D. K. Kim, Y. J. Hwang, G. Lee, G.-R. Yi, and Y. J. Song, “Deterministic assembly of metamolecules by atomic force microscope-enabled manipulation of ultra-smooth, super-spherical gold nanoparticles,” Opt. Express 23(10), 12766–12776 (2015).
[PubMed]

S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014).
[Crossref]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M.-K. Kim, S. H. Lee, M. Choi, B.-H. Ahn, N. Park, Y.-H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express 18(11), 11089–11096 (2010).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, Y.

S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, “Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals,” Nano Lett. 15(4), 2542–2547 (2015).
[Crossref] [PubMed]

Lee, Y.-H.

Lenzmann, F.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[Crossref] [PubMed]

Lin, Y. M.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Liu, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Ma, W.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18(5), 572–576 (2006).
[Crossref]

McGehee, M. D.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Min, B.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M.-K. Kim, S. H. Lee, M. Choi, B.-H. Ahn, N. Park, Y.-H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express 18(11), 11089–11096 (2010).
[Crossref] [PubMed]

Mock, J. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Moreau, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Mueller, T.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Noh, J.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Park, G.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Park, N.

Piper, J. R.

K. X. Wang, J. R. Piper, and S. Fan, “Optical impedance transformer for transparent conducting electrodes,” Nano Lett. 14(5), 2755–2758 (2014).
[Crossref] [PubMed]

Polman, A.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[Crossref] [PubMed]

Seo, M.-K.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Sievenpiper, D. F.

D. F. Sievenpiper, L. Zhang, R. F. Jimenez, N. G. Broas, E. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D Metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Smith, D. R.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Song, H.

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Song, Y. J.

Soukoulis, C. M.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Spinelli, P.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Villeneuve, P. R.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D Metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Wang, K. X.

K. X. Wang, J. R. Piper, and S. Fan, “Optical impedance transformer for transparent conducting electrodes,” Nano Lett. 14(5), 2755–2758 (2014).
[Crossref] [PubMed]

Wang, Q.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Wiley, B. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Winn, J. N.

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D Metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Xia, F.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Yablonovitch, E.

D. F. Sievenpiper, L. Zhang, R. F. Jimenez, N. G. Broas, E. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D Metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Yi, G.-R.

Yin, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Zhang, L.

D. F. Sievenpiper, L. Zhang, R. F. Jimenez, N. G. Broas, E. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

Zhang, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

ACS Nano (1)

S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, “Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells,” ACS Nano 8(4), 3302–3312 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18(5), 572–576 (2006).
[Crossref]

Appl. Phys. Express (1)

S. Lee and J. Kim, “Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminium film,” Appl. Phys. Express 7(11), 112002 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

D. F. Sievenpiper, L. Zhang, R. F. Jimenez, N. G. Broas, E. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999).
[Crossref]

Nano Lett. (4)

S. Jang, E. Hwang, Y. Lee, S. Lee, and J. H. Cho, “Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals,” Nano Lett. 15(4), 2542–2547 (2015).
[Crossref] [PubMed]

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010).
[Crossref] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11(4), 1760–1765 (2011).
[Crossref] [PubMed]

K. X. Wang, J. R. Piper, and S. Fan, “Optical impedance transformer for transparent conducting electrodes,” Nano Lett. 14(5), 2755–2758 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Nature (1)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “3D Metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands,” Phys. Rev. Lett. 80(13), 2829–2832 (1998).
[Crossref]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Band structure of AuNP array, embedded within 160 nm thick cPVP matrix. (b) The spatial distributions of E z vector for PhC mode 1 and SPPs mode 1 at k = a/2π. (c) Retrieved impedance and (d) simulated reflection of AuNP array (metamaterial mirror, MM) and a flat Au.
Fig. 2
Fig. 2 (a) |E| and (b) |H| distributions for a flat Au layer and AuNP array (metamaterial mirror, MM) at wavelength of 707 nm (SPPs mode 1) and 511 nm (PhC mode 1).
Fig. 3
Fig. 3 (a) Retrieved impedance and (b) simulated reflection of silica-Au core-shell NP array. (c) |E| distribution of silica-Au core-shell NP array (metamaterial mirror, MM) at SPP mode 1 and mode 2.
Fig. 4
Fig. 4 (a) Schematic for pentacene-graphene nano-floating gate transistor memory (NFGTM) with metamaterial mirror. (b) Absorbed photon fraction of graphene, 25 nm thick pentacene/graphene hybrid, and 25 nm thick pentacene/graphene incorporated with Au nanodisc. (c) Backward scattering spectra of the disc-shaped AuNP (10 nm in diameter and 5 nm in thickness).
Fig. 5
Fig. 5 Photon absorption fraction within active channel layer for different mirror designs.
Fig. 6
Fig. 6 (a-c) |E| distribution of the NFGTM with a different mirror design: (a) flat Au mirror, (b) AuNP array, and (c) silica-Au core-shell NP array.
Fig. 7
Fig. 7 (a) The 3D full field electromagnetic simulation geometry by finite-difference, time-domain (FDTD) method. (b) Top view of unit cell structure, dotted by blue dotted box.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r = r 0 e i φ = Z S 1 cos ( θ i ) Z S 2 cos ( θ t ) Z S 1 cos ( θ i ) + Z S 2 cos ( θ t )  
n a l ( ε A l ε ) ( ε A l + 2 ε ) + n o x i d e ( ε o x i d e ε ε o x i d e + 2 ε ) = 0
 σ i n t e r ( ω ) = i e 2 ω π Δ d ϵ ( 1 + Δ 2 ϵ 2 ) ( 2 ϵ ) 2 ( ω + i Γ ) 2 × [ f ( ϵ E F ) + f ( ϵ + E F ) ]
 σ i n t r a ( ω ) = e 2 π 2 i ω + i τ 1 Δ d ϵ ( 1 + Δ 2 ϵ 2 ) + [ f ( ϵ E F ) + f ( ϵ + E F ) ]

Metrics