Abstract

Combining theoretical and experimental studies show that optical injection strongly changes the behavior of the linewidth enhancement factor (αH-factor) and the FM-to-AM indices ratio (FAIR) in quantum dash/dot semiconductor lasers. In contrast to solitary lasers, both the αH-factor and the FAIR at low-frequency modulation are reduced by optical injection. At high modulation frequency, however, the phase-amplitude coupling characteristics are little influenced by optical injection.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic behavior of an injection-locked quantum-dash Fabry-Perot laser at zero-detuning

M. Pochet, N. A. Naderi, N. Terry, V. Kovanis, and L. F. Lester
Opt. Express 17(23) 20623-20630 (2009)

Strong optical injection and the differential gain in a quantum dash laser

Luke F. Lester, Nader A. Naderi, Frederic Grillot, Ravi Raghunathan, and Vassilios Kovanis
Opt. Express 22(6) 7222-7228 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
    [Crossref]
  2. A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
    [Crossref]
  3. M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
    [Crossref]
  4. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
    [Crossref]
  5. F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
    [Crossref]
  6. J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).
  7. G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Technol. 14(10), 2367–2373 (1996).
    [Crossref]
  8. T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 9(10), 1322–1324 (1997).
    [Crossref]
  9. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 7(7), 709–711 (1995).
    [Crossref]
  10. X. J. Meng, T. Chau, D. T. K. Tong, and M. C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett. 34(21), 2040–2041 (1998).
    [Crossref]
  11. H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
    [Crossref]
  12. B. Lingnau, K. Lüdge, W. W. Chow, and E. Schöll, “Failure of the α factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(6), 065201 (2012).
    [Crossref] [PubMed]
  13. M. Osiński and J. Buus, “Linewidth broadening factor in semiconductor lasers—An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
    [Crossref]
  14. S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor alpha of quantum dot semiconductor lasers,” Opt. Express 14(7), 2950–2955 (2006).
    [Crossref] [PubMed]
  15. R. Raghuraman, N. Yu, R. Engelmann, H. Lee, and C. L. Shieh, “Spectral dependence of differential gain, mode shift, and linewidth enhancement factor in a InGaAs-GaAs strained-layer single-quantum-well laser operated under high-injection conditions,” IEEE J. Quantum Electron. 29(1), 69–75 (1993).
    [Crossref]
  16. R. C. Srinivasan and J. C. Cartledge, “On using Fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photonics Technol. Lett. 7(11), 1327–1329 (1995).
    [Crossref]
  17. C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
    [Crossref]
  18. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  19. Q.-T. Nguyen, P. Besnard, O. Vaudel, A. Shen, and G.-H. Duan, “Strong dependence of the linewidth enhancement factor onto an externally injected optical signal for locked Fabry-Perot laser diodes,” in European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009 (IEEE, 2009).
    [Crossref]
  20. N. A. Naderi, M. C. Pochet, F. Grillot, A. Shirkhorshidian, V. Kovanis, and L. F. Lester, “Manipulation of the linewidth enhancement factor in an injection-locked Quantum-Dash Fabry-Perot laser at 1550nm,” in 2010 23rd Annual Meeting of the IEEE Photonics Society (IEEE, 2010).
    [Crossref]
  21. L. F. Lester, N. A. Naderi, F. Grillot, R. Raghunathan, and V. Kovanis, “Strong optical injection and the differential gain in a quantum dash laser,” Opt. Express 22(6), 7222–7228 (2014).
    [Crossref] [PubMed]
  22. C. Wang, M. Osiński, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
    [Crossref]
  23. M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43(10), 941–949 (2007).
    [Crossref]
  24. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. G. Provost, C. Paranthoen, and A. Foire, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1308–1314 (2003).
    [Crossref]
  25. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
    [Crossref]
  26. C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50(9), 723–731 (2014).
    [Crossref]
  27. Z. Mi and P. Bhattacharya, “Analysis of the linewidth-enhancement factor of long-wavelength tunnel-injection quantum-dot lasers,” IEEE J. Quantum Electron. 43(5), 363–369 (2007).
    [Crossref]
  28. F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3μm InAs-GaAs quantum dot lasers,” IEEE J. Quantum Electron. 44(10), 946–951 (2008).
    [Crossref]
  29. E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
    [Crossref]
  30. G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Tech. 14(10), 2367–2373 (1996).
    [Crossref]
  31. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
    [Crossref]
  32. N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
    [Crossref]
  33. E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
    [Crossref]
  34. M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004).
    [Crossref]
  35. H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, and G. Eisenstein, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
    [Crossref]
  36. M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi, “Modeling the lasing spectra of InAs/InP quantum dash lasers,” Appl. Phys. Lett. 98(10), 101105 (2011).
    [Crossref]
  37. Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
    [Crossref]
  38. M. E. Chaibi, H. T. Nguyen, C. Gosset, F. Grillot, and D. Erasme, “Time resolved chirp measurement based on a polarization-maintaining fiber,” IEEE Photonics Technol. Lett. 27(14), 1557–1560 (2015).
    [Crossref]
  39. A. Consoli, J. M. G. Tijero, and I. Esquivias, “Time resolved chirp measurements of gain switched semiconductor laser using a polarization based optical differentiator,” Opt. Express 19(11), 10805–10812 (2011).
    [Crossref] [PubMed]
  40. J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder Interferometer,” IEEE Photonics J. 3(3), 476–488 (2011).
    [Crossref]
  41. R.-Q. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009).

2015 (2)

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).

M. E. Chaibi, H. T. Nguyen, C. Gosset, F. Grillot, and D. Erasme, “Time resolved chirp measurement based on a polarization-maintaining fiber,” IEEE Photonics Technol. Lett. 27(14), 1557–1560 (2015).
[Crossref]

2014 (3)

L. F. Lester, N. A. Naderi, F. Grillot, R. Raghunathan, and V. Kovanis, “Strong optical injection and the differential gain in a quantum dash laser,” Opt. Express 22(6), 7222–7228 (2014).
[Crossref] [PubMed]

C. Wang, M. Osiński, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50(9), 723–731 (2014).
[Crossref]

2013 (1)

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

2012 (1)

B. Lingnau, K. Lüdge, W. W. Chow, and E. Schöll, “Failure of the α factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(6), 065201 (2012).
[Crossref] [PubMed]

2011 (4)

M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi, “Modeling the lasing spectra of InAs/InP quantum dash lasers,” Appl. Phys. Lett. 98(10), 101105 (2011).
[Crossref]

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

A. Consoli, J. M. G. Tijero, and I. Esquivias, “Time resolved chirp measurements of gain switched semiconductor laser using a polarization based optical differentiator,” Opt. Express 19(11), 10805–10812 (2011).
[Crossref] [PubMed]

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder Interferometer,” IEEE Photonics J. 3(3), 476–488 (2011).
[Crossref]

2009 (2)

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

2008 (2)

E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[Crossref]

F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3μm InAs-GaAs quantum dot lasers,” IEEE J. Quantum Electron. 44(10), 946–951 (2008).
[Crossref]

2007 (3)

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

Z. Mi and P. Bhattacharya, “Analysis of the linewidth-enhancement factor of long-wavelength tunnel-injection quantum-dot lasers,” IEEE J. Quantum Electron. 43(5), 363–369 (2007).
[Crossref]

M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43(10), 941–949 (2007).
[Crossref]

2006 (2)

S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor alpha of quantum dot semiconductor lasers,” Opt. Express 14(7), 2950–2955 (2006).
[Crossref] [PubMed]

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
[Crossref]

2004 (4)

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[Crossref]

M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004).
[Crossref]

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, and G. Eisenstein, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[Crossref]

2003 (2)

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. G. Provost, C. Paranthoen, and A. Foire, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1308–1314 (2003).
[Crossref]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

2000 (1)

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

1998 (1)

X. J. Meng, T. Chau, D. T. K. Tong, and M. C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett. 34(21), 2040–2041 (1998).
[Crossref]

1997 (1)

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 9(10), 1322–1324 (1997).
[Crossref]

1996 (2)

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Technol. 14(10), 2367–2373 (1996).
[Crossref]

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Tech. 14(10), 2367–2373 (1996).
[Crossref]

1995 (2)

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 7(7), 709–711 (1995).
[Crossref]

R. C. Srinivasan and J. C. Cartledge, “On using Fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photonics Technol. Lett. 7(11), 1327–1329 (1995).
[Crossref]

1993 (1)

R. Raghuraman, N. Yu, R. Engelmann, H. Lee, and C. L. Shieh, “Spectral dependence of differential gain, mode shift, and linewidth enhancement factor in a InGaAs-GaAs strained-layer single-quantum-well laser operated under high-injection conditions,” IEEE J. Quantum Electron. 29(1), 69–75 (1993).
[Crossref]

1987 (1)

M. Osiński and J. Buus, “Linewidth broadening factor in semiconductor lasers—An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

1983 (1)

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

1982 (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

Alizon, R.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, and G. Eisenstein, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[Crossref]

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Barrios, P. J.

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

Benisty, E.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, and G. Eisenstein, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[Crossref]

Besnard, P.

Q.-T. Nguyen, P. Besnard, O. Vaudel, A. Shen, and G.-H. Duan, “Strong dependence of the linewidth enhancement factor onto an externally injected optical signal for locked Fabry-Perot laser diodes,” in European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009 (IEEE, 2009).
[Crossref]

Bhattacharya, P.

M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi, “Modeling the lasing spectra of InAs/InP quantum dash lasers,” Appl. Phys. Lett. 98(10), 101105 (2011).
[Crossref]

Z. Mi and P. Bhattacharya, “Analysis of the linewidth-enhancement factor of long-wavelength tunnel-injection quantum-dot lasers,” IEEE J. Quantum Electron. 43(5), 363–369 (2007).
[Crossref]

Bimberg, D.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Buus, J.

M. Osiński and J. Buus, “Linewidth broadening factor in semiconductor lasers—An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

Cartledge, J. C.

R. C. Srinivasan and J. C. Cartledge, “On using Fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photonics Technol. Lett. 7(11), 1327–1329 (1995).
[Crossref]

Chaibi, M. E.

M. E. Chaibi, H. T. Nguyen, C. Gosset, F. Grillot, and D. Erasme, “Time resolved chirp measurement based on a polarization-maintaining fiber,” IEEE Photonics Technol. Lett. 27(14), 1557–1560 (2015).
[Crossref]

Chau, T.

X. J. Meng, T. Chau, D. T. K. Tong, and M. C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett. 34(21), 2040–2041 (1998).
[Crossref]

Chen, J. X.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. G. Provost, C. Paranthoen, and A. Foire, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1308–1314 (2003).
[Crossref]

Chow, W. W.

B. Lingnau, K. Lüdge, W. W. Chow, and E. Schöll, “Failure of the α factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(6), 065201 (2012).
[Crossref] [PubMed]

Consoli, A.

Dagens, B.

F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3μm InAs-GaAs quantum dot lasers,” IEEE J. Quantum Electron. 44(10), 946–951 (2008).
[Crossref]

Dery, H.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, and G. Eisenstein, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[Crossref]

Duan, G.-H.

Q.-T. Nguyen, P. Besnard, O. Vaudel, A. Shen, and G.-H. Duan, “Strong dependence of the linewidth enhancement factor onto an externally injected optical signal for locked Fabry-Perot laser diodes,” in European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009 (IEEE, 2009).
[Crossref]

Eisenstein, G.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, and G. Eisenstein, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[Crossref]

Eliseev, P. G.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[Crossref]

Engelmann, R.

R. Raghuraman, N. Yu, R. Engelmann, H. Lee, and C. L. Shieh, “Spectral dependence of differential gain, mode shift, and linewidth enhancement factor in a InGaAs-GaAs strained-layer single-quantum-well laser operated under high-injection conditions,” IEEE J. Quantum Electron. 29(1), 69–75 (1993).
[Crossref]

Epstein, A.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, and G. Eisenstein, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[Crossref]

Erasme, D.

M. E. Chaibi, H. T. Nguyen, C. Gosset, F. Grillot, and D. Erasme, “Time resolved chirp measurement based on a polarization-maintaining fiber,” IEEE Photonics Technol. Lett. 27(14), 1557–1560 (2015).
[Crossref]

Esquivias, I.

Even, J.

C. Wang, M. Osiński, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50(9), 723–731 (2014).
[Crossref]

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

Foire, A.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. G. Provost, C. Paranthoen, and A. Foire, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1308–1314 (2003).
[Crossref]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. G. Provost, C. Paranthoen, and A. Foire, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1308–1314 (2003).
[Crossref]

Gavrielides, A.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 7(7), 709–711 (1995).
[Crossref]

Gioannini, M.

M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43(10), 941–949 (2007).
[Crossref]

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
[Crossref]

M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004).
[Crossref]

Goodchild, D.

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

Gosset, C.

M. E. Chaibi, H. T. Nguyen, C. Gosset, F. Grillot, and D. Erasme, “Time resolved chirp measurement based on a polarization-maintaining fiber,” IEEE Photonics Technol. Lett. 27(14), 1557–1560 (2015).
[Crossref]

Grillot, F.

M. E. Chaibi, H. T. Nguyen, C. Gosset, F. Grillot, and D. Erasme, “Time resolved chirp measurement based on a polarization-maintaining fiber,” IEEE Photonics Technol. Lett. 27(14), 1557–1560 (2015).
[Crossref]

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).

C. Wang, M. Osiński, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50(9), 723–731 (2014).
[Crossref]

L. F. Lester, N. A. Naderi, F. Grillot, R. Raghunathan, and V. Kovanis, “Strong optical injection and the differential gain in a quantum dash laser,” Opt. Express 22(6), 7222–7228 (2014).
[Crossref] [PubMed]

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder Interferometer,” IEEE Photonics J. 3(3), 476–488 (2011).
[Crossref]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3μm InAs-GaAs quantum dot lasers,” IEEE J. Quantum Electron. 44(10), 946–951 (2008).
[Crossref]

N. A. Naderi, M. C. Pochet, F. Grillot, A. Shirkhorshidian, V. Kovanis, and L. F. Lester, “Manipulation of the linewidth enhancement factor in an injection-locked Quantum-Dash Fabry-Perot laser at 1550nm,” in 2010 23rd Annual Meeting of the IEEE Photonics Society (IEEE, 2010).
[Crossref]

Harder, C.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Huyet, G.

S. Melnik, G. Huyet, and A. Uskov, “The linewidth enhancement factor alpha of quantum dot semiconductor lasers,” Opt. Express 14(7), 2950–2955 (2006).
[Crossref] [PubMed]

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Jiao, Z. J.

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

Kamei, A.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Khan, M. Z. M.

M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi, “Modeling the lasing spectra of InAs/InP quantum dash lasers,” Appl. Phys. Lett. 98(10), 101105 (2011).
[Crossref]

Kovanis, V.

L. F. Lester, N. A. Naderi, F. Grillot, R. Raghunathan, and V. Kovanis, “Strong optical injection and the differential gain in a quantum dash laser,” Opt. Express 22(6), 7222–7228 (2014).
[Crossref] [PubMed]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

N. A. Naderi, M. C. Pochet, F. Grillot, A. Shirkhorshidian, V. Kovanis, and L. F. Lester, “Manipulation of the linewidth enhancement factor in an injection-locked Quantum-Dash Fabry-Perot laser at 1550nm,” in 2010 23rd Annual Meeting of the IEEE Photonics Society (IEEE, 2010).
[Crossref]

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

LaRochelle, S.

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).

Lau, E. K.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[Crossref]

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

Ledentsov, N. N.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Lee, H.

R. Raghuraman, N. Yu, R. Engelmann, H. Lee, and C. L. Shieh, “Spectral dependence of differential gain, mode shift, and linewidth enhancement factor in a InGaAs-GaAs strained-layer single-quantum-well laser operated under high-injection conditions,” IEEE J. Quantum Electron. 29(1), 69–75 (1993).
[Crossref]

Lester, L. F.

L. F. Lester, N. A. Naderi, F. Grillot, R. Raghunathan, and V. Kovanis, “Strong optical injection and the differential gain in a quantum dash laser,” Opt. Express 22(6), 7222–7228 (2014).
[Crossref] [PubMed]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3μm InAs-GaAs quantum dot lasers,” IEEE J. Quantum Electron. 44(10), 946–951 (2008).
[Crossref]

N. A. Naderi, M. C. Pochet, F. Grillot, A. Shirkhorshidian, V. Kovanis, and L. F. Lester, “Manipulation of the linewidth enhancement factor in an injection-locked Quantum-Dash Fabry-Perot laser at 1550nm,” in 2010 23rd Annual Meeting of the IEEE Photonics Society (IEEE, 2010).
[Crossref]

Lingnau, B.

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50(9), 723–731 (2014).
[Crossref]

B. Lingnau, K. Lüdge, W. W. Chow, and E. Schöll, “Failure of the α factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(6), 065201 (2012).
[Crossref] [PubMed]

Liu, J. M.

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 9(10), 1322–1324 (1997).
[Crossref]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 7(7), 709–711 (1995).
[Crossref]

Liu, J. R.

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

Lu, Z. G.

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

Lüdge, K.

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50(9), 723–731 (2014).
[Crossref]

B. Lingnau, K. Lüdge, W. W. Chow, and E. Schöll, “Failure of the α factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(6), 065201 (2012).
[Crossref] [PubMed]

Malloy, K. J.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[Crossref]

Markus, A.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. G. Provost, C. Paranthoen, and A. Foire, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1308–1314 (2003).
[Crossref]

McPeake, D.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Melnik, S.

Meng, X. J.

X. J. Meng, T. Chau, D. T. K. Tong, and M. C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett. 34(21), 2040–2041 (1998).
[Crossref]

Mi, Z.

Z. Mi and P. Bhattacharya, “Analysis of the linewidth-enhancement factor of long-wavelength tunnel-injection quantum-dot lasers,” IEEE J. Quantum Electron. 43(5), 363–369 (2007).
[Crossref]

Mikhelashvili, V.

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, and G. Eisenstein, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[Crossref]

Montrosset, I.

M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43(10), 941–949 (2007).
[Crossref]

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
[Crossref]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Naderi, N. A.

L. F. Lester, N. A. Naderi, F. Grillot, R. Raghunathan, and V. Kovanis, “Strong optical injection and the differential gain in a quantum dash laser,” Opt. Express 22(6), 7222–7228 (2014).
[Crossref] [PubMed]

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

N. A. Naderi, M. C. Pochet, F. Grillot, A. Shirkhorshidian, V. Kovanis, and L. F. Lester, “Manipulation of the linewidth enhancement factor in an injection-locked Quantum-Dash Fabry-Perot laser at 1550nm,” in 2010 23rd Annual Meeting of the IEEE Photonics Society (IEEE, 2010).
[Crossref]

Ng, T. K.

M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi, “Modeling the lasing spectra of InAs/InP quantum dash lasers,” Appl. Phys. Lett. 98(10), 101105 (2011).
[Crossref]

Nguyen, H. T.

M. E. Chaibi, H. T. Nguyen, C. Gosset, F. Grillot, and D. Erasme, “Time resolved chirp measurement based on a polarization-maintaining fiber,” IEEE Photonics Technol. Lett. 27(14), 1557–1560 (2015).
[Crossref]

Nguyen, Q.-T.

Q.-T. Nguyen, P. Besnard, O. Vaudel, A. Shen, and G.-H. Duan, “Strong dependence of the linewidth enhancement factor onto an externally injected optical signal for locked Fabry-Perot laser diodes,” in European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009 (IEEE, 2009).
[Crossref]

Nishi, K.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

O’Reilly, E. P.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Ooi, B. S.

M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi, “Modeling the lasing spectra of InAs/InP quantum dash lasers,” Appl. Phys. Lett. 98(10), 101105 (2011).
[Crossref]

Osinski, M.

C. Wang, M. Osiński, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

M. Osiński and J. Buus, “Linewidth broadening factor in semiconductor lasers—An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

Pakulski, G.

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

Paranthoen, C.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. G. Provost, C. Paranthoen, and A. Foire, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1308–1314 (2003).
[Crossref]

Pochet, M.

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

Pochet, M. C.

N. A. Naderi, M. C. Pochet, F. Grillot, A. Shirkhorshidian, V. Kovanis, and L. F. Lester, “Manipulation of the linewidth enhancement factor in an injection-locked Quantum-Dash Fabry-Perot laser at 1550nm,” in 2010 23rd Annual Meeting of the IEEE Photonics Society (IEEE, 2010).
[Crossref]

Poitras, D.

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

Poole, P. J.

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

Provost, J. G.

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder Interferometer,” IEEE Photonics J. 3(3), 476–488 (2011).
[Crossref]

F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3μm InAs-GaAs quantum dot lasers,” IEEE J. Quantum Electron. 44(10), 946–951 (2008).
[Crossref]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. G. Provost, C. Paranthoen, and A. Foire, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1308–1314 (2003).
[Crossref]

Raghunathan, R.

Raghuraman, R.

R. Raghuraman, N. Yu, R. Engelmann, H. Lee, and C. L. Shieh, “Spectral dependence of differential gain, mode shift, and linewidth enhancement factor in a InGaAs-GaAs strained-layer single-quantum-well laser operated under high-injection conditions,” IEEE J. Quantum Electron. 29(1), 69–75 (1993).
[Crossref]

Rioux, B.

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

Saito, H.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Sarraute, J.-M.

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).

Schires, K.

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).

Schöll, E.

B. Lingnau, K. Lüdge, W. W. Chow, and E. Schöll, “Failure of the α factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(6), 065201 (2012).
[Crossref] [PubMed]

Schwingenschlogl, U.

M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi, “Modeling the lasing spectra of InAs/InP quantum dash lasers,” Appl. Phys. Lett. 98(10), 101105 (2011).
[Crossref]

Sevega, A.

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
[Crossref]

Shen, A.

Q.-T. Nguyen, P. Besnard, O. Vaudel, A. Shen, and G.-H. Duan, “Strong dependence of the linewidth enhancement factor onto an externally injected optical signal for locked Fabry-Perot laser diodes,” in European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009 (IEEE, 2009).
[Crossref]

Shieh, C. L.

R. Raghuraman, N. Yu, R. Engelmann, H. Lee, and C. L. Shieh, “Spectral dependence of differential gain, mode shift, and linewidth enhancement factor in a InGaAs-GaAs strained-layer single-quantum-well laser operated under high-injection conditions,” IEEE J. Quantum Electron. 29(1), 69–75 (1993).
[Crossref]

Shirkhorshidian, A.

N. A. Naderi, M. C. Pochet, F. Grillot, A. Shirkhorshidian, V. Kovanis, and L. F. Lester, “Manipulation of the linewidth enhancement factor in an injection-locked Quantum-Dash Fabry-Perot laser at 1550nm,” in 2010 23rd Annual Meeting of the IEEE Photonics Society (IEEE, 2010).
[Crossref]

Simpson, T. B.

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 9(10), 1322–1324 (1997).
[Crossref]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 7(7), 709–711 (1995).
[Crossref]

SpringThorpe, A. J.

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

Srinivasan, R. C.

R. C. Srinivasan and J. C. Cartledge, “On using Fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photonics Technol. Lett. 7(11), 1327–1329 (1995).
[Crossref]

Stintz, A.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[Crossref]

Su, H.

F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3μm InAs-GaAs quantum dot lasers,” IEEE J. Quantum Electron. 44(10), 946–951 (2008).
[Crossref]

Sugou, S.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

Sung, H. K.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

Sung, H.-K.

E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[Crossref]

Terry, N. B.

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

Tijero, J. M. G.

Tong, D. T. K.

X. J. Meng, T. Chau, D. T. K. Tong, and M. C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett. 34(21), 2040–2041 (1998).
[Crossref]

Ukhanov, A. A.

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[Crossref]

Uskov, A.

Uskov, A. V.

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

Vahala, K.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Vaudel, O.

Q.-T. Nguyen, P. Besnard, O. Vaudel, A. Shen, and G.-H. Duan, “Strong dependence of the linewidth enhancement factor onto an externally injected optical signal for locked Fabry-Perot laser diodes,” in European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009 (IEEE, 2009).
[Crossref]

Wang, C.

C. Wang, M. Osiński, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50(9), 723–731 (2014).
[Crossref]

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

Wong, L. J.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

Wu, M. C.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[Crossref]

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

X. J. Meng, T. Chau, D. T. K. Tong, and M. C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett. 34(21), 2040–2041 (1998).
[Crossref]

Yabre, G.

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Technol. 14(10), 2367–2373 (1996).
[Crossref]

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Tech. 14(10), 2367–2373 (1996).
[Crossref]

Yariv, A.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Yu, N.

R. Raghuraman, N. Yu, R. Engelmann, H. Lee, and C. L. Shieh, “Spectral dependence of differential gain, mode shift, and linewidth enhancement factor in a InGaAs-GaAs strained-layer single-quantum-well laser operated under high-injection conditions,” IEEE J. Quantum Electron. 29(1), 69–75 (1993).
[Crossref]

Appl. Phys. Lett. (5)

C. Wang, M. Osiński, J. Even, and F. Grillot, “Phase-amplitude coupling characteristics in directly modulated quantum dot lasers,” Appl. Phys. Lett. 105(22), 221114 (2014).
[Crossref]

M. Z. M. Khan, T. K. Ng, U. Schwingenschlogl, P. Bhattacharya, and B. S. Ooi, “Modeling the lasing spectra of InAs/InP quantum dash lasers,” Appl. Phys. Lett. 98(10), 101105 (2011).
[Crossref]

A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, “Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers,” Appl. Phys. Lett. 84(7), 1058–1060 (2004).
[Crossref]

A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, and G. Huyet, “Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states,” Appl. Phys. Lett. 84(2), 272–274 (2004).
[Crossref]

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor α of semiconductor lasers,” Appl. Phys. Lett. 42(4), 328–330 (1983).
[Crossref]

Electron. Lett. (2)

X. J. Meng, T. Chau, D. T. K. Tong, and M. C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett. 34(21), 2040–2041 (1998).
[Crossref]

Z. G. Lu, P. J. Poole, J. R. Liu, P. J. Barrios, Z. J. Jiao, G. Pakulski, D. Poitras, D. Goodchild, B. Rioux, and A. J. SpringThorpe, “High-performance 1.52 μm InAs/InP quantum dot distributed feedback laser,” Electron. Lett. 47, 818–819 (2011).
[Crossref]

IEEE J. Quantum Electron. (10)

E. K. Lau, H.-K. Sung, and M. C. Wu, “Frequency response enhancement of optical injection-locked lasers,” IEEE J. Quantum Electron. 44(1), 90–99 (2008).
[Crossref]

M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004).
[Crossref]

M. Gioannini and I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43(10), 941–949 (2007).
[Crossref]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982).
[Crossref]

C. Wang, B. Lingnau, K. Lüdge, J. Even, and F. Grillot, “Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state,” IEEE J. Quantum Electron. 50(9), 723–731 (2014).
[Crossref]

Z. Mi and P. Bhattacharya, “Analysis of the linewidth-enhancement factor of long-wavelength tunnel-injection quantum-dot lasers,” IEEE J. Quantum Electron. 43(5), 363–369 (2007).
[Crossref]

F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3μm InAs-GaAs quantum dot lasers,” IEEE J. Quantum Electron. 44(10), 946–951 (2008).
[Crossref]

M. Osiński and J. Buus, “Linewidth broadening factor in semiconductor lasers—An overview,” IEEE J. Quantum Electron. 23(1), 9–29 (1987).
[Crossref]

R. Raghuraman, N. Yu, R. Engelmann, H. Lee, and C. L. Shieh, “Spectral dependence of differential gain, mode shift, and linewidth enhancement factor in a InGaAs-GaAs strained-layer single-quantum-well laser operated under high-injection conditions,” IEEE J. Quantum Electron. 29(1), 69–75 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

F. Grillot, C. Wang, N. A. Naderi, and J. Even, “Modulation properties of self-injected quantum-dot semiconductor diode lasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1900812 (2013).
[Crossref]

J.-M. Sarraute, K. Schires, S. LaRochelle, and F. Grillot, “Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever,” IEEE J. Sel. Top. Quantum Electron. 21, 1801408 (2015).

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

N. A. Naderi, M. Pochet, F. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. G. Provost, C. Paranthoen, and A. Foire, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1308–1314 (2003).
[Crossref]

IEEE Photonics J. (1)

J. G. Provost and F. Grillot, “Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach-Zehnder Interferometer,” IEEE Photonics J. 3(3), 476–488 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (6)

R. C. Srinivasan and J. C. Cartledge, “On using Fiber transfer functions to characterize laser chirp and fiber dispersion,” IEEE Photonics Technol. Lett. 7(11), 1327–1329 (1995).
[Crossref]

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 9(10), 1322–1324 (1997).
[Crossref]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photonics Technol. Lett. 7(7), 709–711 (1995).
[Crossref]

M. E. Chaibi, H. T. Nguyen, C. Gosset, F. Grillot, and D. Erasme, “Time resolved chirp measurement based on a polarization-maintaining fiber,” IEEE Photonics Technol. Lett. 27(14), 1557–1560 (2015).
[Crossref]

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photonics Technol. Lett. 12(10), 1298–1300 (2000).
[Crossref]

J. Appl. Phys. (1)

H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, and G. Eisenstein, “On the nature of quantum dash structures,” J. Appl. Phys. 95(11), 6103–6111 (2004).
[Crossref]

J. Lightwave Tech. (1)

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Tech. 14(10), 2367–2373 (1996).
[Crossref]

J. Lightwave Technol. (1)

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightwave Technol. 14(10), 2367–2373 (1996).
[Crossref]

Opt. Express (3)

Opt. Quantum Electron. (1)

M. Gioannini, A. Sevega, and I. Montrosset, “Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers,” Opt. Quantum Electron. 38(4-6), 381–394 (2006).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

B. Lingnau, K. Lüdge, W. W. Chow, and E. Schöll, “Failure of the α factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(6), 065201 (2012).
[Crossref] [PubMed]

Other (4)

R.-Q. Hui and M. O’Sullivan, Fiber Optic Measurement Techniques (Elsevier, 2009).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

Q.-T. Nguyen, P. Besnard, O. Vaudel, A. Shen, and G.-H. Duan, “Strong dependence of the linewidth enhancement factor onto an externally injected optical signal for locked Fabry-Perot laser diodes,” in European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe-EQEC 2009 (IEEE, 2009).
[Crossref]

N. A. Naderi, M. C. Pochet, F. Grillot, A. Shirkhorshidian, V. Kovanis, and L. F. Lester, “Manipulation of the linewidth enhancement factor in an injection-locked Quantum-Dash Fabry-Perot laser at 1550nm,” in 2010 23rd Annual Meeting of the IEEE Photonics Society (IEEE, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Electronic structure of the Qdot laser used for rate equation modeling.
Fig. 2
Fig. 2 Intensity modulation (IM) response (a) at various injection ratios with a zero frequency detuning, and (b) at various frequency detuning with an injection ratio of R = 1.0. (c) Carrier density responses of injection-locked laser with R = 0.2 at zero frequency detuning. Inset in (c) is the corresponding carrier responses of the solitary laser, which is normalized to the GS response at the lasing threshold (Ith = 49 mA). The bias current is fixed at 1.2 × Ith.
Fig. 3
Fig. 3 (a) The αH-factor and (b) the FAIR of the Qdot laser subject to optical injection for various injection ratios. The frequency detuning is fixed at 0 GHz.
Fig. 4
Fig. 4 (a) The αH-factor of the injected laser for frequency detunings from −5 GHz up to 7 GHz; (b) The FAIR for the corresponding frequency detunings shown in (a). The injection ratio is fixed at R = 1.0.
Fig. 5
Fig. 5 Schematic of the experimental setup. PMF: polarization maintaining fibre; HWP: half-wave plate; QWP: quarter-wave plate.
Fig. 6
Fig. 6 (a) An illustration of the measured intensity (black) and chirp (blue) waveforms; (b) FAIR of the solitary laser as well as of the laser subject to optical injection with injection ratios of R = 2.0 and R = 5.0. The frequency detuning of the master laser with respect to the slave laser is fixed at −4.0 GHz. The grey horizontal line indicates the αH-factor of the Qdash laser.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2 β m (ω)= α H ( 1+ ω c jω )
d N RS dt = I qV + N ES τ RS ES N RS τ ES RS ( 1 ρ ES ) N RS τ RS spon
d N ES dt =( N RS τ ES RS + N GS τ ES GS )( 1 ρ ES ) N ES τ GS ES ( 1 ρ GS ) N ES τ RS ES N ES τ ES spon
d N GS dt = N ES τ GS ES ( 1 ρ GS ) N GS τ ES GS ( 1 ρ ES ) v g g GS S GS N GS τ GS spon
d S GS dt =( Γ p v g g GS 1 τ P ) S GS + β SP N GS τ GS spon +2 k c S inj S GS cosϕ
dϕ dt =Δ ω N Δ ω inj k c S inj S GS sinϕ
Δ ω N = 1 2 Γ P v g g GS α H GS + 1 2 Γ P v g g ES F ES GS + 1 2 Γ P v g g RS F RS GS
g GS = a GS 1+ξ S GS N B H B ( 2 N GS 2 N B / H B 1 ) g ES = a ES N B H B ( 2 N ES 4 N B / H B 1 ) g RS = a RS D RS A RS H B ( 2 N RS D RS /( A RS H B ) 1 )
F ES,RS GS = ω GS ω ES,RS ( ω ES,RS ω GS ) T D 1+ ( ω ES,RS ω GS ) 2 T D 2
α H (ω)= 2 Γ P v g δ( Δ ω N ) δ g GS α H GS + 1 2 F ES a ES δ N ES aδ N GS +2 F RS a RS δ N RS aδ N GS
( 2 β m (ω) ) inj =2 jωδϕ/ω δ S GS / S GS α H (ω)(jω+1/ τ p Γ p v g g GS )+ k c S inj / S GS ( sinϕ α H (ω)cosϕ ) jω+ k c S inj / S GS ( cosϕ α H (ω)sinϕ )

Metrics