Abstract

We employ three highly sensitive spectrometers: a photoacoustic spectrometer, a photothermal common-path interferometer and a whispering-gallery-resonator-based absorption spectrometer, for a comparative study of measuring the absorption coefficient of nominally transparent undoped, congruently grown lithium niobate for ordinarily and extraordinarily polarized light in the wavelength range from 390 to 3800 nm. The absorption coefficient ranges from below 10−4 cm−1 up to 2 cm−1. Furthermore, we measure the absorption at the Urbach tail as well as the multiphonon edge of the material by a standard grating spectrometer and a Fourier-transform infrared spectrometer, providing for the first time an absorption spectrum of the whole transparency window of lithium niobate. The absorption coefficients obtained by the three highly sensitive and independent methods show good agreement.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of the photorefractive and pyroelectric-electro-optic effect in lithium niobate on whispering-gallery modes

Markus Leidinger, Christoph S. Werner, Wataru Yoshiki, Karsten Buse, and Ingo Breunig
Opt. Lett. 41(23) 5474-5477 (2016)

Photorefractive properties of lithium niobate crystals doped with manganese

Yunping Yang, Demetri Psaltis, Marc Luennemann, Dirk Berben, Ulrich Hartwig, and Karsten Buse
J. Opt. Soc. Am. B 20(7) 1491-1502 (2003)

References

  • View by:
  • |
  • |
  • |

  1. ISO, “Optics and optical instruments–Lasers and laser-related equipment – Test method for absorptance of optical laser components,” ISO 11551:2003.
  2. A. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
    [Crossref]
  3. N. Waasem, S. Fieberg, J. Hauser, G. Gomez, D. Haertle, F. Kühnemann, and K. Buse, “Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity,” Rev. Sci. Instrum. 84, 023109 (2013).
    [Crossref] [PubMed]
  4. A. Alexandrovski, M. M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
    [Crossref]
  5. A. Alexandrovski, Stanford Photo-Thermal Solutions 13-3547 Maile Street Pahoa, HI 96778 (private communication, 2013).
  6. R. DeSalvo, A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quant. Electr. 32, 1324–1333 (1996).
    [Crossref]
  7. M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
    [Crossref]
  8. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004).
    [Crossref]
  9. J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
    [Crossref]
  10. J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
    [Crossref] [PubMed]
  11. A. Gröne and S. Kapphan, “Higher vibrational states of OH/OD in the bulk of congruent LiNbO3 and in proton/deuteron exchanged layers at the surface of LiNbO3,” J. Phys. Condens. Matter 7, 6393–6405 (1995).
    [Crossref]
  12. A. Förster, S. Kapphan, and M. Wöhlecke, “Overtone spectroscopy of the OH and OD stretch modes in LiNbO3,” Phys. Stat. Sol. B 143, 755–764 (1987).
    [Crossref]
  13. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147 (1999).
    [Crossref]
  14. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Ring-down spectroscopy for studying properties of CW Raman lasers,” Opt. Commun. 260, 662–665 (2006).
    [Crossref]
  15. P. A. Arsenev and B. A. Baranov, “Properties of the ions of the iron transition group in the lattice of single-crystalline lithium niobate,” phys. stat. sol. (a) 9, 673–677 (1972).
    [Crossref]
  16. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
    [Crossref]
  17. K. Buse, F. Jerman, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
    [Crossref]
  18. M. E. Lines, “Ultralow-loss glasses,” Annu. Rev. Mater. Sci. 16, 113–135 (1986).
    [Crossref]
  19. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
    [Crossref] [PubMed]

2013 (1)

N. Waasem, S. Fieberg, J. Hauser, G. Gomez, D. Haertle, F. Kühnemann, and K. Buse, “Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity,” Rev. Sci. Instrum. 84, 023109 (2013).
[Crossref] [PubMed]

2010 (2)

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[Crossref] [PubMed]

2009 (2)

A. Alexandrovski, M. M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[Crossref]

2007 (1)

2006 (1)

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Ring-down spectroscopy for studying properties of CW Raman lasers,” Opt. Commun. 260, 662–665 (2006).
[Crossref]

2004 (1)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004).
[Crossref]

2000 (1)

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[Crossref]

1999 (1)

1996 (1)

R. DeSalvo, A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quant. Electr. 32, 1324–1333 (1996).
[Crossref]

1995 (1)

A. Gröne and S. Kapphan, “Higher vibrational states of OH/OD in the bulk of congruent LiNbO3 and in proton/deuteron exchanged layers at the surface of LiNbO3,” J. Phys. Condens. Matter 7, 6393–6405 (1995).
[Crossref]

1993 (1)

K. Buse, F. Jerman, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[Crossref]

1987 (1)

A. Förster, S. Kapphan, and M. Wöhlecke, “Overtone spectroscopy of the OH and OD stretch modes in LiNbO3,” Phys. Stat. Sol. B 143, 755–764 (1987).
[Crossref]

1986 (2)

A. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

M. E. Lines, “Ultralow-loss glasses,” Annu. Rev. Mater. Sci. 16, 113–135 (1986).
[Crossref]

1972 (1)

P. A. Arsenev and B. A. Baranov, “Properties of the ions of the iron transition group in the lattice of single-crystalline lithium niobate,” phys. stat. sol. (a) 9, 673–677 (1972).
[Crossref]

Alexandrovski, A.

A. Alexandrovski, M. M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

A. Alexandrovski, Stanford Photo-Thermal Solutions 13-3547 Maile Street Pahoa, HI 96778 (private communication, 2013).

Arsenev, P. A.

P. A. Arsenev and B. A. Baranov, “Properties of the ions of the iron transition group in the lattice of single-crystalline lithium niobate,” phys. stat. sol. (a) 9, 673–677 (1972).
[Crossref]

Baranov, B. A.

P. A. Arsenev and B. A. Baranov, “Properties of the ions of the iron transition group in the lattice of single-crystalline lithium niobate,” phys. stat. sol. (a) 9, 673–677 (1972).
[Crossref]

Buse, K.

N. Waasem, S. Fieberg, J. Hauser, G. Gomez, D. Haertle, F. Kühnemann, and K. Buse, “Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity,” Rev. Sci. Instrum. 84, 023109 (2013).
[Crossref] [PubMed]

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[Crossref] [PubMed]

K. Buse, F. Jerman, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[Crossref]

DeSalvo, R.

R. DeSalvo, A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quant. Electr. 32, 1324–1333 (1996).
[Crossref]

Falk, M.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[Crossref] [PubMed]

Fejer, M. M.

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[Crossref] [PubMed]

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

A. Alexandrovski, M. M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Fieberg, S.

N. Waasem, S. Fieberg, J. Hauser, G. Gomez, D. Haertle, F. Kühnemann, and K. Buse, “Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity,” Rev. Sci. Instrum. 84, 023109 (2013).
[Crossref] [PubMed]

Förster, A.

A. Förster, S. Kapphan, and M. Wöhlecke, “Overtone spectroscopy of the OH and OD stretch modes in LiNbO3,” Phys. Stat. Sol. B 143, 755–764 (1987).
[Crossref]

Gomez, G.

N. Waasem, S. Fieberg, J. Hauser, G. Gomez, D. Haertle, F. Kühnemann, and K. Buse, “Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity,” Rev. Sci. Instrum. 84, 023109 (2013).
[Crossref] [PubMed]

Gorodetsky, M. L.

Gröne, A.

A. Gröne and S. Kapphan, “Higher vibrational states of OH/OD in the bulk of congruent LiNbO3 and in proton/deuteron exchanged layers at the surface of LiNbO3,” J. Phys. Condens. Matter 7, 6393–6405 (1995).
[Crossref]

Guntau, M.

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[Crossref]

Haertle, D.

N. Waasem, S. Fieberg, J. Hauser, G. Gomez, D. Haertle, F. Kühnemann, and K. Buse, “Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity,” Rev. Sci. Instrum. 84, 023109 (2013).
[Crossref] [PubMed]

Hagan, D. J.

R. DeSalvo, A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quant. Electr. 32, 1324–1333 (1996).
[Crossref]

Halonen, L.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[Crossref]

Harren, F. J. M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[Crossref]

Hauser, J.

N. Waasem, S. Fieberg, J. Hauser, G. Gomez, D. Haertle, F. Kühnemann, and K. Buse, “Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity,” Rev. Sci. Instrum. 84, 023109 (2013).
[Crossref] [PubMed]

Ilchenko, V. S.

Ioakeimidi, K.

Jerman, F.

K. Buse, F. Jerman, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[Crossref]

Jundt, D.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Jundt, D. H.

Kajiyama, M. C. C.

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[Crossref] [PubMed]

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

Kapphan, S.

A. Gröne and S. Kapphan, “Higher vibrational states of OH/OD in the bulk of congruent LiNbO3 and in proton/deuteron exchanged layers at the surface of LiNbO3,” J. Phys. Condens. Matter 7, 6393–6405 (1995).
[Crossref]

A. Förster, S. Kapphan, and M. Wöhlecke, “Overtone spectroscopy of the OH and OD stretch modes in LiNbO3,” Phys. Stat. Sol. B 143, 755–764 (1987).
[Crossref]

Krätzig, E.

K. Buse, F. Jerman, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[Crossref]

Kühnemann, F.

N. Waasem, S. Fieberg, J. Hauser, G. Gomez, D. Haertle, F. Kühnemann, and K. Buse, “Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity,” Rev. Sci. Instrum. 84, 023109 (2013).
[Crossref] [PubMed]

Lines, M. E.

M. E. Lines, “Ultralow-loss glasses,” Annu. Rev. Mater. Sci. 16, 113–135 (1986).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Ring-down spectroscopy for studying properties of CW Raman lasers,” Opt. Commun. 260, 662–665 (2006).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004).
[Crossref]

Markosian, A.

A. Alexandrovski, M. M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Ring-down spectroscopy for studying properties of CW Raman lasers,” Opt. Commun. 260, 662–665 (2006).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004).
[Crossref]

Peltola, J.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[Crossref]

Persijn, S.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[Crossref]

Phillips, C. R.

Route, R.

A. Alexandrovski, M. M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Said, A.

R. DeSalvo, A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quant. Electr. 32, 1324–1333 (1996).
[Crossref]

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref] [PubMed]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Ring-down spectroscopy for studying properties of CW Raman lasers,” Opt. Commun. 260, 662–665 (2006).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004).
[Crossref]

Schwesyg, J. R.

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[Crossref] [PubMed]

Sheik-Bahae, M.

R. DeSalvo, A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quant. Electr. 32, 1324–1333 (1996).
[Crossref]

Tam, A.

A. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

Triebel, W.

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[Crossref]

Vainio, M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[Crossref]

Van Stryland, E. W.

R. DeSalvo, A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quant. Electr. 32, 1324–1333 (1996).
[Crossref]

Waasem, N.

N. Waasem, S. Fieberg, J. Hauser, G. Gomez, D. Haertle, F. Kühnemann, and K. Buse, “Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity,” Rev. Sci. Instrum. 84, 023109 (2013).
[Crossref] [PubMed]

Wöhlecke, M.

A. Förster, S. Kapphan, and M. Wöhlecke, “Overtone spectroscopy of the OH and OD stretch modes in LiNbO3,” Phys. Stat. Sol. B 143, 755–764 (1987).
[Crossref]

Annu. Rev. Mater. Sci. (1)

M. E. Lines, “Ultralow-loss glasses,” Annu. Rev. Mater. Sci. 16, 113–135 (1986).
[Crossref]

Appl. Phys. B (2)

J. R. Schwesyg, M. C. C. Kajiyama, M. Falk, D. Jundt, K. Buse, and M. M. Fejer, “Light absorption in undoped congruent and magnesium-doped lithium niobate crystals in the visible wavelength range,” Appl. Phys. B 100, 109–115 (2010).
[Crossref]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[Crossref]

Ferroelectrics (1)

K. Buse, F. Jerman, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[Crossref]

IEEE J. Quant. Electr. (1)

R. DeSalvo, A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quant. Electr. 32, 1324–1333 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

A. Gröne and S. Kapphan, “Higher vibrational states of OH/OD in the bulk of congruent LiNbO3 and in proton/deuteron exchanged layers at the surface of LiNbO3,” J. Phys. Condens. Matter 7, 6393–6405 (1995).
[Crossref]

Opt. Commun. (1)

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Ring-down spectroscopy for studying properties of CW Raman lasers,” Opt. Commun. 260, 662–665 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004).
[Crossref]

phys. stat. sol. (a) (1)

P. A. Arsenev and B. A. Baranov, “Properties of the ions of the iron transition group in the lattice of single-crystalline lithium niobate,” phys. stat. sol. (a) 9, 673–677 (1972).
[Crossref]

Phys. Stat. Sol. B (1)

A. Förster, S. Kapphan, and M. Wöhlecke, “Overtone spectroscopy of the OH and OD stretch modes in LiNbO3,” Phys. Stat. Sol. B 143, 755–764 (1987).
[Crossref]

Proc. SPIE (1)

A. Alexandrovski, M. M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[Crossref]

Rev. Mod. Phys. (1)

A. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[Crossref]

Rev. Sci. Instrum. (2)

N. Waasem, S. Fieberg, J. Hauser, G. Gomez, D. Haertle, F. Kühnemann, and K. Buse, “Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity,” Rev. Sci. Instrum. 84, 023109 (2013).
[Crossref] [PubMed]

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[Crossref]

Other (2)

ISO, “Optics and optical instruments–Lasers and laser-related equipment – Test method for absorptance of optical laser components,” ISO 11551:2003.

A. Alexandrovski, Stanford Photo-Thermal Solutions 13-3547 Maile Street Pahoa, HI 96778 (private communication, 2013).

Supplementary Material (6)

NameDescription
» Data File 1: CSV (14 KB)      Absorption spectra of undoped, congruently grown LiNbO3 for ordinarily polarized light, measured with photoacoustic spectroscopy (PAS)
» Data File 2: CSV (9 KB)      Absorption spectra of undoped, congruently grown LiNbO3 for extraordinarily polarized light, measured with photoacoustic spectroscopy (PAS)
» Data File 3: CSV (17 KB)      Absorption spectra of undoped, congruently grown LiNbO3 for ordinarily polarized light, measured with photothermal common-path interferometry (PCI)
» Data File 4: CSV (16 KB)      Absorption spectra of undoped, congruently grown LiNbO3 for extraordinarily polarized light, measured with photothermal common-path interferometry (PCI)
» Data File 5: CSV (1 KB)      Extinction coefficient of undoped, congruently grown LiNbO3 for ordinarily polarized light, measured by whispering-gallery-resonator-based absorption spectroscopy (WGRAS)
» Data File 6: CSV (1 KB)      Extinction coefficient of undoped, congruently grown LiNbO3 for extraordinarily polarized light, measured by whispering-gallery-resonator-based absorption spectroscopy (WGRAS)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Absorption spectra of undoped, congruently grown LiNbO3 for ordinarily (left) and extraordinarily (right) polarized light, measured with a grating spectrometer (GS, 200 to 3000 nm) and a Fourier transform infrared spectrometer (FTIR, 3000 to 6000 nm).
Fig. 2
Fig. 2 Measurement principle of the photoacoustic spectrometer: Partial absorption of a laser pulse leads to a heating of the sample, which causes a pressure wave due to thermal expansion. This acoustic wave then travels through the crystals and is detected by a piezoelectric transducer, attached to the surface of the sample.
Fig. 3
Fig. 3 Absorption spectra of undoped, congruently grown LiNbO3 for ordinarily (left) and extraordinarily (right) polarized light, measured with photoacoustic spectroscopy (PAS). See Data File 1 and Data File 2 for underlying values.
Fig. 4
Fig. 4 Measurement principle of the photothermal common-path interferometer: The refractive index change caused by the absorbed energy of the pump beam leads to self interference of the probe beam. The intensity change in the probe beam center is detected by a photodiode. A Lock-In amplifier is used.
Fig. 5
Fig. 5 FTIR measurement of the absorption coefficient of the fundamental OH vibration band in LiNbO3 at 2870 nm for ordinarily polarized light. The red circles are the calibrated PCI values, and the orange curve is the FTIR measurement of the sample.
Fig. 6
Fig. 6 The absorption spectra of undoped, congruently grown LiNbO3 for ordinarily (left) and extraordinarily (right) polarized light, measured with photothermal common-path interferometry (PCI). See Data File 3 and Data File 4 for underlying values.
Fig. 7
Fig. 7 Left: Experimental setup. Right: WGR mode. From its linewidth, the Q-factor can be calculated.
Fig. 8
Fig. 8 Extinction coefficient of undoped, congruently grown LiNbO3 for ordinarily (left) and extraordinarily (right) polarized light, measured by whispering-gallery-resonator-based absorption spectroscopy (WGRAS). See Data File 5 and Data File 6 for underlying values.
Fig. 9
Fig. 9 Absorption spectra of undoped, congruently grown LiNbO3 in logarithmic scale (a) for ordinarily and (b) for extraordinarily polarized light: The results from the measurement of a photoacoustic spectrometer (PAS), a photothermal common-path interferometer (PCI) and a whispering-gallery-resonator-based absorption spectrometer (WGRAS) are shown.
Fig. 10
Fig. 10 Left: Data for the absorption coefficient of LiNbO3 collected by Savchenkov et al. (blue dots, polarization of the light not given) together with his estimation for the theoretical shape of the absorption. Right: Absorption coefficient measured by PAS, PCI and WGRAS of undoped, congruently grown LiNbO3 for ordinarily polarized light with the fit using the same model.
Fig. 11
Fig. 11 Comparison of the absorption coefficient measured by PAS, PCI and WGRAS of undoped, congruently grown LiNbO3 with values obtained by studying the same sample with a standard GS in (a) the visible and (b) the near infrared light range. Left: ordinarily polarized light. Right: extraordinarily polarized light.
Fig. 12
Fig. 12 Absorption spectra of congruently grown LiNbO3 for the entire transparency window, measured by PAS, PCI, WGRAS, GS and FTIR. (a): ordinarily polarized light. (b): extraordinarily polarized light.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α = U PhAc E pulse K = S PhAc K ,
1 Q = 1 Q c + 1 Q σ + 1 Q κ .
α α UV e λ UV / λ + α R λ 4 + α IR e λ IR / λ

Metrics