Abstract

A broadband non-dispersive thin-film polarizer for ultrafast applications is presented. The polarizer has a controllable flat-phase and a high extinction ratio of 23:1 in the working bandwidth from 680 nm to 900 nm. This bandwidth allows supporting laser pulses down to 12 fs. The unavoidable mechanical stress of the interference coating is completely compensated by a specially designed antireflection coating on the second side of the substrate, allowing the use of thin substrates.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Octave spanning wedge dispersive mirrors with low dispersion oscillations

Florian Habel, Vage Shirvanyan, Michael Trubetskov, Christian Burger, Annkatrin Sommer, Matthias F. Kling, Martin Schultze, and Vladimir Pervak
Opt. Express 24(9) 9218-9223 (2016)

Gires-Tournois interferometer type negative dispersion mirrors for deep ultraviolet pulse compression

Christopher A. Rivera, Stephen E. Bradforth, and Gabriel Tempea
Opt. Express 18(18) 18615-18624 (2010)

Stress compensation with antireflection coatings for ultrafast laser applications: from theory to practice

Tatiana Amotchkina, Michael K. Trubetskov, Yurij Pervak, Laszlo Veisz, and Vladimir Pervak
Opt. Express 22(24) 30387-30393 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. Pervak, V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 Fs,” Appl. Phys. B 87(1), 5–12 (2006).
    [Crossref]
  2. V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
    [Crossref] [PubMed]
  3. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband double-chirped mirror pairs for generation of octave spectra,” J. Opt. Soc. Am. B 18(6), 882 (2001).
    [Crossref]
  4. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  5. K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, “Compressing μJ-level pulses from 250 fs to sub-10 fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40(7), 1238–1241 (2015).
    [Crossref] [PubMed]
  6. T. Ganz, V. Pervak, A. Apolonski, and P. Baum, “16 fs, 350 nJ pulses at 5 MHz repetition rate delivered by chirped pulse compression in fibers,” Opt. Lett. 36(7), 1107–1109 (2011).
    [Crossref] [PubMed]
  7. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
    [Crossref]
  8. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  9. W. Schneider, A. Ryabov, C. Lombosi, T. Metzger, Z. Major, J. A. Fülöp, and P. Baum, “800-fs, 330-μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO₃,” Opt. Lett. 39(23), 6604–6607 (2014).
    [Crossref] [PubMed]
  10. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45–63 (2014).
    [Crossref]
  11. A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
    [Crossref] [PubMed]
  12. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
    [Crossref] [PubMed]
  13. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
    [Crossref] [PubMed]
  14. T. Amotchkina, M. K. Trubetskov, Y. Pervak, L. Veisz, and V. Pervak, “Stress compensation with antireflection coatings for ultrafast laser applications: from theory to practice,” Opt. Express 22(24), 30387–30393 (2014).
    [Crossref] [PubMed]
  15. T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2012 (1)

2011 (1)

2009 (3)

2007 (1)

2006 (1)

V. Pervak, V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 Fs,” Appl. Phys. B 87(1), 5–12 (2006).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

1996 (1)

Abdolvand, A.

Ahmad, I.

Alismail, A.

Alsaif, B.

Amotchkina, T.

Amotchkina, T. V.

Angelow, G.

Apolonski, A.

Arisholm, G.

Azzeer, A. M.

Barros, H. G.

Baum, P.

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

Brons, J.

Ciappina, M.

DeBell, G. W.

Ell, R.

Fattahi, H.

Frosz, M. H.

Fujimoto, J. G.

Fülöp, J. A.

Ganz, T.

Geng, X. T.

Gorjan, M.

Grupe, D.

Haefner, M.

Ippen, E. P.

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Karpowicz, N.

Kärtner, F. X.

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Kim, D.-E.

Krausz, F.

Lombosi, C.

Major, Z.

Mak, K. F.

Metzger, T.

Morgner, U.

Naumov, S.

V. Pervak, V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 Fs,” Appl. Phys. B 87(1), 5–12 (2006).
[Crossref]

Nubbemeyer, T.

Pervak, V.

Pervak, Y.

Prinz, S.

Pronin, O.

Russell, P. S. J.

Ryabov, A.

Scheuer, V.

Schibli, T.

Schneider, W.

Schultze, M.

Schwarz, A.

Seidel, M.

Sutter, D.

Teisset, C. Y.

Tikhonravov, A. V.

Tikhonravov, V.

V. Pervak, V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 Fs,” Appl. Phys. B 87(1), 5–12 (2006).
[Crossref]

Travers, J. C.

Trubetskov, M. K.

Tschudi, T.

Ueffing, M.

Vámos, L.

Veisz, L.

Yakovlev, V. S.

Appl. Opt. (4)

Appl. Phys. B (1)

V. Pervak, V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 Fs,” Appl. Phys. B 87(1), 5–12 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Rev. Mod. Phys. (2)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[Crossref]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Physical layer thicknesses for the polarizing coating on the front side (left) and the stress compensating antireflection coating on the back side (right).
Fig. 2
Fig. 2 Absolute transmission measurements at AOI = 75° (solid). Calculated Design including the Anti reflective coating on the back side (dashed).
Fig. 3
Fig. 3 GDD measurement at AOI = 75° (symbols). The calculated design includes the dispersion of the substrate with a thickness of 3 mm and the antireflection coating (solid).
Fig. 4
Fig. 4 Simulations for the interaction of a Gaussian pulse with duration of 11.1 fs with the polarizer-coating. The shapes of the reflected and transmitted pulses is not changed by the coating. The dispersion of the substrate was not included to demonstrate the capability of the coating.

Metrics