Abstract

A back-illuminated mesa-structure InGaAs/InP modified uni-traveling-carrier photodiode (MUTC-PD) is fabricated and its frequency response is investigated. A bandwidth of 40 GHz and a saturation photocurrent up to 33 mA are demonstrated. A photocurrent-dependent equivalent circuit model is proposed to analyze the frequency response of the high power MUTC-PDs. The influences of the space-charge screening, self-induced electric field and over-shoot effects are discussed in detail based on the model. Fitted curves obtained from the simple equivalent circuit model are found to be in good agreement with the data measured under different bias voltages and photocurrents.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast dual-drifting layer uni-traveling carrier photodiode with high saturation current

Jin Li, Bing Xiong, Yi Luo, Changzheng Sun, Jian Wang, Zhibiao Hao, Yanjun Han, Lai Wang, and Hongtao Li
Opt. Express 24(8) 8420-8428 (2016)

Design of modified InGaAs/InP one-sided junction photodiodes with improved response at high light intensity

Jie Xu, Xiupu Zhang, and Ahmed Kishk
Appl. Opt. 57(31) 9365-9374 (2018)

High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode

Zhi Li, Yang Fu, Molly Piels, Huapu Pan, Andreas Beling, John E. Bowers, and Joe C. Campbell
Opt. Express 19(26) B385-B390 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
    [Crossref]
  3. F. J. Effenberger and A. M. Joshi, “Ultrafast dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
    [Crossref]
  4. X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. J. Williams, “High saturation current InP/InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett. 15(4), 864–866 (2003).
  5. E. Rouvalis, Q. Zhou, A. Beling, A. S. Cross, A. G. Steffan, and J. C. Campbell, “High-power and high-linearity photodetector module based on a modified uni-traveling carrier photodiode,” in Proceedings of IEEE Conference on Microwave Photonics (IEEE 2013), pp.13–16.
    [Crossref]
  6. T. Shi, B. Xiong, C. Sun, and Y. Luo, “Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
    [Crossref]
  7. W. Gang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 51(4), 1227–1233 (2003).
    [Crossref]
  8. J. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, C. Liu, C. Y. Chen, and J. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
    [Crossref]
  9. T. Shi, B. Xiong, C. Sun, and Y. Luo, “Study on the saturation characteristics of high-speed uni-traveling-carrier photodiodes based on field screening analysis,” Chin. Opt. Lett. 9(8), 082302 (2011).
    [Crossref]
  10. W. M. Webster, “On the variation of junction-transistor current-amplification factor with emitter current,” Proc. IRE42(6), 914–920 (1954).
    [Crossref]
  11. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
    [Crossref]
  12. T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283(1), 469–479 (2001).
    [Crossref]
  13. J. L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquembergue, “Electron transport properties of strained InxGa1−xAs,” Appl. Phys. Lett. 56(4), 346–348 (1990).
    [Crossref]
  14. J. Shi, F. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
    [Crossref]
  15. T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
    [Crossref]

2013 (1)

T. Shi, B. Xiong, C. Sun, and Y. Luo, “Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

2012 (1)

J. Shi, F. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

2011 (1)

2010 (1)

J. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, C. Liu, C. Y. Chen, and J. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

2009 (1)

2004 (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

2003 (2)

W. Gang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. J. Williams, “High saturation current InP/InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett. 15(4), 864–866 (2003).

2001 (1)

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283(1), 469–479 (2001).
[Crossref]

1997 (1)

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

1996 (1)

F. J. Effenberger and A. M. Joshi, “Ultrafast dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

1990 (1)

J. L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquembergue, “Electron transport properties of strained InxGa1−xAs,” Appl. Phys. Lett. 56(4), 346–348 (1990).
[Crossref]

1977 (1)

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

Baudry, L.

J. L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquembergue, “Electron transport properties of strained InxGa1−xAs,” Appl. Phys. Lett. 56(4), 346–348 (1990).
[Crossref]

Bourel, P.

J. L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquembergue, “Electron transport properties of strained InxGa1−xAs,” Appl. Phys. Lett. 56(4), 346–348 (1990).
[Crossref]

Bowers, J. E.

J. Shi, F. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

Campbell, J. C.

X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. J. Williams, “High saturation current InP/InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett. 15(4), 864–866 (2003).

Cappy, A.

J. L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquembergue, “Electron transport properties of strained InxGa1−xAs,” Appl. Phys. Lett. 56(4), 346–348 (1990).
[Crossref]

Chang, C. L.

J. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, C. Liu, C. Y. Chen, and J. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Chen, C. Y.

J. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, C. Liu, C. Y. Chen, and J. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Chyi, J.

J. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, C. Liu, C. Y. Chen, and J. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Demiguel, S.

X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. J. Williams, “High saturation current InP/InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett. 15(4), 864–866 (2003).

Effenberger, F. J.

F. J. Effenberger and A. M. Joshi, “Ultrafast dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

Fauquembergue, R.

J. L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquembergue, “Electron transport properties of strained InxGa1−xAs,” Appl. Phys. Lett. 56(4), 346–348 (1990).
[Crossref]

Frey, J.

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

Furuta, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283(1), 469–479 (2001).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

Fushimi, H.

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283(1), 469–479 (2001).
[Crossref]

Gang, W.

W. Gang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Hanawa, I.

W. Gang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Ishibashi, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283(1), 469–479 (2001).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

Ito, H.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283(1), 469–479 (2001).
[Crossref]

Joshi, A. M.

F. J. Effenberger and A. M. Joshi, “Ultrafast dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

Kobayashi, M.

W. Gang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Kodama, S.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

Kuo, F.

J. Shi, F. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

Kuo, F. M.

J. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, C. Liu, C. Y. Chen, and J. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Li, N.

X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. J. Williams, “High saturation current InP/InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett. 15(4), 864–866 (2003).

Li, X.

X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. J. Williams, “High saturation current InP/InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett. 15(4), 864–866 (2003).

Liu, C.

J. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, C. Liu, C. Y. Chen, and J. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Luo, Y.

T. Shi, B. Xiong, C. Sun, and Y. Luo, “Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

T. Shi, B. Xiong, C. Sun, and Y. Luo, “Study on the saturation characteristics of high-speed uni-traveling-carrier photodiodes based on field screening analysis,” Chin. Opt. Lett. 9(8), 082302 (2011).
[Crossref]

Maloney, T. J.

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

Muramoto, Y.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

Nagatsuma, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

Sato, K.

W. Gang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Shi, J.

J. Shi, F. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

J. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, C. Liu, C. Y. Chen, and J. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Shi, T.

T. Shi, B. Xiong, C. Sun, and Y. Luo, “Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

T. Shi, B. Xiong, C. Sun, and Y. Luo, “Study on the saturation characteristics of high-speed uni-traveling-carrier photodiodes based on field screening analysis,” Chin. Opt. Lett. 9(8), 082302 (2011).
[Crossref]

Shimizu, N.

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

Sun, C.

T. Shi, B. Xiong, C. Sun, and Y. Luo, “Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

T. Shi, B. Xiong, C. Sun, and Y. Luo, “Study on the saturation characteristics of high-speed uni-traveling-carrier photodiodes based on field screening analysis,” Chin. Opt. Lett. 9(8), 082302 (2011).
[Crossref]

Thobel, J. L.

J. L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquembergue, “Electron transport properties of strained InxGa1−xAs,” Appl. Phys. Lett. 56(4), 346–348 (1990).
[Crossref]

Tokumitsu, T.

W. Gang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Tulchinsky, D.

X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. J. Williams, “High saturation current InP/InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett. 15(4), 864–866 (2003).

Webster, W. M.

W. M. Webster, “On the variation of junction-transistor current-amplification factor with emitter current,” Proc. IRE42(6), 914–920 (1954).
[Crossref]

Williams, K. J.

X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. J. Williams, “High saturation current InP/InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett. 15(4), 864–866 (2003).

Wu, C. J.

J. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, C. Liu, C. Y. Chen, and J. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Xiong, B.

T. Shi, B. Xiong, C. Sun, and Y. Luo, “Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

T. Shi, B. Xiong, C. Sun, and Y. Luo, “Study on the saturation characteristics of high-speed uni-traveling-carrier photodiodes based on field screening analysis,” Chin. Opt. Lett. 9(8), 082302 (2011).
[Crossref]

Yao, J.

Yoneda, Y.

W. Gang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Zheng, X.

X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. J. Williams, “High saturation current InP/InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett. 15(4), 864–866 (2003).

Appl. Phys. Lett. (1)

J. L. Thobel, L. Baudry, A. Cappy, P. Bourel, and R. Fauquembergue, “Electron transport properties of strained InxGa1−xAs,” Appl. Phys. Lett. 56(4), 346–348 (1990).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

J. Shi, F. M. Kuo, C. J. Wu, C. L. Chang, C. Liu, C. Y. Chen, and J. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP-InGaAs uni-traveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 10(4), 709–727 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. Shi, F. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

T. Shi, B. Xiong, C. Sun, and Y. Luo, “Back-to-back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

X. Li, N. Li, X. Zheng, S. Demiguel, J. C. Campbell, D. Tulchinsky, and K. J. Williams, “High saturation current InP/InGaAs photodiode with partially depleted absorber,” IEEE Photonics Technol. Lett. 15(4), 864–866 (2003).

IEEE Trans. Microwave Theory Tech. (1)

W. Gang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

J. Appl. Phys. (1)

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

J. Lightwave Technol. (2)

F. J. Effenberger and A. M. Joshi, “Ultrafast dual-depletion region, InGaAs/InP p-i-n detector,” J. Lightwave Technol. 14(8), 1859–1864 (1996).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Ishibashi, S. Kodama, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997).
[Crossref]

Proc. SPIE (1)

T. Ishibashi, T. Furuta, H. Fushimi, and H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283(1), 469–479 (2001).
[Crossref]

Other (2)

W. M. Webster, “On the variation of junction-transistor current-amplification factor with emitter current,” Proc. IRE42(6), 914–920 (1954).
[Crossref]

E. Rouvalis, Q. Zhou, A. Beling, A. S. Cross, A. G. Steffan, and J. C. Campbell, “High-power and high-linearity photodetector module based on a modified uni-traveling carrier photodiode,” in Proceedings of IEEE Conference on Microwave Photonics (IEEE 2013), pp.13–16.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Epitaxial layer structure of the MUTC-PD.
Fig. 2
Fig. 2 (a) RF responses of the MUTC-PD at different photocurrents under 3 V reverse bias. (b) 3-dB bandwidth of the device under different biases and photocurrents.
Fig. 3
Fig. 3 Output RF power of the device under reverse biases of 2, 3 and 4 V at the frequency of 40 GHz, respectively.
Fig. 4
Fig. 4 Equivalent circuit model of the MUTC-PD.
Fig. 5
Fig. 5 Measured S 22 under (a) 2 V, (b) 3 V, and (c) 4 V reverse bias with different photocurrents.
Fig. 6
Fig. 6 (a) Measured and fitted S 22 parameters and (b) relative RF response S 21 curves of the device with 5 and 30 mA photocurrents under 2 V reverse bias.
Fig. 7
Fig. 7 (a) Extracted resistances (Ru and Rj ) and (b) capacitances (Cu and Cj ) versus photocurrents under different reverse biases.
Fig. 8
Fig. 8 (a) Measured S 22 parameters at 15 mA photocurrent under different reverse biases, and (b) measured and fitted relative RF response (S 21) at 15 mA photocurrent under 3 V reverse bias.
Fig. 9
Fig. 9 (a) Extracted transit time of electron and (b) calculated average drift velocity of electron in the 835-nm-thick depletion region under different reverse biases.
Fig. 10
Fig. 10 Distribution of electric field in the MUTC-PD under (a) 2 V, (b) 3 V and (c) 4 V reverse biases at different photocurrents.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ R ( I , V ) = d q s μ n 0 , I I 0 R ( I , V ) = d 1 q s μ n 0 + d 2 q s μ ( n 0 + n ) , I > I 0 .
{ C ( I , V ) = ε s d , I I 0 C ( I , V ) = ε s d + q s d 2 Δ n Δ U , I > I 0 .

Metrics