Abstract

A technique for measuring the ablation and laser-induced damage threshold (LIDT) by identifying the temporal onset of damage and location of initiation within the beam profile is demonstrated. This new method, dubbed Spatio-TEmporally REsolved Optical Laser Induced Damage (STEREO LID), is compared to traditional damage tests and its advantages are exemplified.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of defect densities from spatiotemporally resolved optical-laser induced damage measurements

Yejia Xu, Luke A. Emmert, and Wolfgang Rudolph
Appl. Opt. 54(22) 6813-6819 (2015)

Absolute onset of optical surface damage using distributed defect ensembles

J. O. Porteus and Steven C. Seitel
Appl. Opt. 23(21) 3796-3805 (1984)

The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I. Damage morphology

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence
Opt. Express 25(13) 15161-15178 (2017)

References

  • View by:
  • |
  • |
  • |

  1. The proceedings of the Annual Laser Damage Symposium in Boulder, CO, USA from 1969–2014. Available in the Proceedings of SPIE.
  2. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3) 175–190 (1997).
    [Crossref]
  3. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373–S376 (1999).
    [Crossref]
  4. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
    [Crossref]
  5. S. R. Foltyn, “Spotsize effects in laser damage testing,” Nat. Bur. Stand. (U.S.) Spec. Publ. 669, 368–379 (1984).
  6. J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defect ensembles,” Appl. Opt. 23, 3796–3805 (1984).
    [Crossref] [PubMed]
  7. “ISO21254-1:2011: Test methods for laser induced damage threshold — part 1: Definitions and general principles,” ISOISO21254-1:2011 (2011).
  8. J. Y. Natoli, L. Gallais, B. Bertussi, M. Commandre, and C. Amra, “Toward an absolute measurement of LIDT,” Proc. SPIE 4932, 224–236 (2002).
    [Crossref]
  9. A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirukaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254–2 standard,” Proc. SPIE 6101, 85301Y (2006).
    [Crossref]
  10. J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
    [Crossref] [PubMed]
  11. L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser induced-damage to dielectric thin films,” Appl. Phys. Lett. 23, 607–609 (1973).
    [Crossref]
  12. L. Jensen, S. Schrameyer, M. Jupe, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
    [Crossref]
  13. W. Rudolph, L. A. Emmert, Z. Sun, D. Patel, and C. S. Menoni, “Laser damage in thin films — what we know and what we don’t,” Proc. SPIE 8885, 888516 (2013).
    [Crossref]
  14. Z. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafniasilica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt. 40, 1897–1906 (2001).
    [Crossref]
  15. A. During, C. Fossati, and M. Commandre, “Photothermal deflection microscopy for imaging sub-micronic defects in optical materials,” Opt. Commun. 230, 279–286 (2004).
    [Crossref]
  16. R. A. Weber, C. Rodriguez, D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Third harmonic microscopy of intrinsic and induced material anisotropy in dielectric thin films,” Opt. Eng. 51, 121807 (2012).
    [Crossref]
  17. C. J. Stolz, M. D. Thomas, and A. J. Griffin, “Bds thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
    [Crossref]
  18. R. H. Picard, D. Milam, and R. A. Bradbury, “Statistical analysis of defect-caused laser damage in thin films,” Appl. Opt. 16, 1563–1571 (1977).
    [Crossref] [PubMed]
  19. M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A 81, 317–324 (2005).
    [Crossref]
  20. H. Borchert, K. Darée, and M. Hugenschmidt, “Plasma formation during the interaction of picosecond and nanosecond laser pulses with BK7 glass,” J. Phys. D: Appl. Phys. 38, 300–305 (2005).
    [Crossref]
  21. A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2842 (2001).
    [Crossref]
  22. L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandre, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
    [Crossref]
  23. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
    [Crossref]
  24. Y. Xu, L. A. Emmert, and W. Rudolph, “Determination of defect densities from spatiotemporally resolved optical-laser induced damage measurements,” Appl. Opt. 54, 6813–6819 (2015).
    [Crossref]
  25. Y. Xu, L. A. Emmert, M. Alhamadani, D. Patel, C. S. Menoni, and W. Rudolph, “Characterization of defect distributions in optical films and on surfaces by STEREO-LID (Spatio-TEmporally REsolved Optical Laser Induced Damage),” (2015). in preparation.

2015 (1)

2013 (1)

W. Rudolph, L. A. Emmert, Z. Sun, D. Patel, and C. S. Menoni, “Laser damage in thin films — what we know and what we don’t,” Proc. SPIE 8885, 888516 (2013).
[Crossref]

2012 (1)

R. A. Weber, C. Rodriguez, D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Third harmonic microscopy of intrinsic and induced material anisotropy in dielectric thin films,” Opt. Eng. 51, 121807 (2012).
[Crossref]

2010 (1)

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[Crossref]

2009 (1)

L. Jensen, S. Schrameyer, M. Jupe, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

2008 (2)

L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandre, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[Crossref]

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “Bds thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[Crossref]

2006 (1)

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirukaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254–2 standard,” Proc. SPIE 6101, 85301Y (2006).
[Crossref]

2005 (3)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A 81, 317–324 (2005).
[Crossref]

H. Borchert, K. Darée, and M. Hugenschmidt, “Plasma formation during the interaction of picosecond and nanosecond laser pulses with BK7 glass,” J. Phys. D: Appl. Phys. 38, 300–305 (2005).
[Crossref]

2004 (1)

A. During, C. Fossati, and M. Commandre, “Photothermal deflection microscopy for imaging sub-micronic defects in optical materials,” Opt. Commun. 230, 279–286 (2004).
[Crossref]

2002 (2)

J. Y. Natoli, L. Gallais, B. Bertussi, M. Commandre, and C. Amra, “Toward an absolute measurement of LIDT,” Proc. SPIE 4932, 224–236 (2002).
[Crossref]

J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
[Crossref] [PubMed]

2001 (2)

Z. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafniasilica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt. 40, 1897–1906 (2001).
[Crossref]

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2842 (2001).
[Crossref]

1999 (1)

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373–S376 (1999).
[Crossref]

1997 (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3) 175–190 (1997).
[Crossref]

1984 (2)

S. R. Foltyn, “Spotsize effects in laser damage testing,” Nat. Bur. Stand. (U.S.) Spec. Publ. 669, 368–379 (1984).

J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defect ensembles,” Appl. Opt. 23, 3796–3805 (1984).
[Crossref] [PubMed]

1977 (1)

1973 (1)

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser induced-damage to dielectric thin films,” Appl. Phys. Lett. 23, 607–609 (1973).
[Crossref]

Akhouayri, H.

Alhamadani, M.

Y. Xu, L. A. Emmert, M. Alhamadani, D. Patel, C. S. Menoni, and W. Rudolph, “Characterization of defect distributions in optical films and on surfaces by STEREO-LID (Spatio-TEmporally REsolved Optical Laser Induced Damage),” (2015). in preparation.

Amra, C.

J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
[Crossref] [PubMed]

J. Y. Natoli, L. Gallais, B. Bertussi, M. Commandre, and C. Amra, “Toward an absolute measurement of LIDT,” Proc. SPIE 4932, 224–236 (2002).
[Crossref]

Ashkenasi, D.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373–S376 (1999).
[Crossref]

Balachninaite, O.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirukaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254–2 standard,” Proc. SPIE 6101, 85301Y (2006).
[Crossref]

Balciunas, T.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirukaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254–2 standard,” Proc. SPIE 6101, 85301Y (2006).
[Crossref]

Bertussi, B.

J. Y. Natoli, L. Gallais, B. Bertussi, M. Commandre, and C. Amra, “Toward an absolute measurement of LIDT,” Proc. SPIE 4932, 224–236 (2002).
[Crossref]

Blaschke, H.

L. Jensen, S. Schrameyer, M. Jupe, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

Borchert, H.

H. Borchert, K. Darée, and M. Hugenschmidt, “Plasma formation during the interaction of picosecond and nanosecond laser pulses with BK7 glass,” J. Phys. D: Appl. Phys. 38, 300–305 (2005).
[Crossref]

Bradbury, R. A.

Capoulade, J.

L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandre, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[Crossref]

Chmel, A. E.

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3) 175–190 (1997).
[Crossref]

Commandre, M.

L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandre, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[Crossref]

A. During, C. Fossati, and M. Commandre, “Photothermal deflection microscopy for imaging sub-micronic defects in optical materials,” Opt. Commun. 230, 279–286 (2004).
[Crossref]

J. Y. Natoli, L. Gallais, B. Bertussi, M. Commandre, and C. Amra, “Toward an absolute measurement of LIDT,” Proc. SPIE 4932, 224–236 (2002).
[Crossref]

Darée, K.

H. Borchert, K. Darée, and M. Hugenschmidt, “Plasma formation during the interaction of picosecond and nanosecond laser pulses with BK7 glass,” J. Phys. D: Appl. Phys. 38, 300–305 (2005).
[Crossref]

DeShazer, L. G.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser induced-damage to dielectric thin films,” Appl. Phys. Lett. 23, 607–609 (1973).
[Crossref]

During, A.

A. During, C. Fossati, and M. Commandre, “Photothermal deflection microscopy for imaging sub-micronic defects in optical materials,” Opt. Commun. 230, 279–286 (2004).
[Crossref]

Emmert, L. A.

Y. Xu, L. A. Emmert, and W. Rudolph, “Determination of defect densities from spatiotemporally resolved optical-laser induced damage measurements,” Appl. Opt. 54, 6813–6819 (2015).
[Crossref]

W. Rudolph, L. A. Emmert, Z. Sun, D. Patel, and C. S. Menoni, “Laser damage in thin films — what we know and what we don’t,” Proc. SPIE 8885, 888516 (2013).
[Crossref]

R. A. Weber, C. Rodriguez, D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Third harmonic microscopy of intrinsic and induced material anisotropy in dielectric thin films,” Opt. Eng. 51, 121807 (2012).
[Crossref]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[Crossref]

Y. Xu, L. A. Emmert, M. Alhamadani, D. Patel, C. S. Menoni, and W. Rudolph, “Characterization of defect distributions in optical films and on surfaces by STEREO-LID (Spatio-TEmporally REsolved Optical Laser Induced Damage),” (2015). in preparation.

Feit, M. D.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2842 (2001).
[Crossref]

Foltyn, S. R.

S. R. Foltyn, “Spotsize effects in laser damage testing,” Nat. Bur. Stand. (U.S.) Spec. Publ. 669, 368–379 (1984).

Fossati, C.

A. During, C. Fossati, and M. Commandre, “Photothermal deflection microscopy for imaging sub-micronic defects in optical materials,” Opt. Commun. 230, 279–286 (2004).
[Crossref]

Gallais, L.

L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandre, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[Crossref]

J. Y. Natoli, L. Gallais, B. Bertussi, M. Commandre, and C. Amra, “Toward an absolute measurement of LIDT,” Proc. SPIE 4932, 224–236 (2002).
[Crossref]

J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
[Crossref] [PubMed]

Génin, F. Y.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2842 (2001).
[Crossref]

Griffin, A. J.

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “Bds thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[Crossref]

Grigonis, R.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirukaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254–2 standard,” Proc. SPIE 6101, 85301Y (2006).
[Crossref]

Hugenschmidt, M.

H. Borchert, K. Darée, and M. Hugenschmidt, “Plasma formation during the interaction of picosecond and nanosecond laser pulses with BK7 glass,” J. Phys. D: Appl. Phys. 38, 300–305 (2005).
[Crossref]

Hughes, J. D.

Jensen, L.

L. Jensen, S. Schrameyer, M. Jupe, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

Jupe, M.

L. Jensen, S. Schrameyer, M. Jupe, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

Leung, K. M.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser induced-damage to dielectric thin films,” Appl. Phys. Lett. 23, 607–609 (1973).
[Crossref]

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Lorenz, M.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373–S376 (1999).
[Crossref]

Mao, S. S.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2842 (2001).
[Crossref]

Melninkaitis, A.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirukaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254–2 standard,” Proc. SPIE 6101, 85301Y (2006).
[Crossref]

Menoni, C. S.

W. Rudolph, L. A. Emmert, Z. Sun, D. Patel, and C. S. Menoni, “Laser damage in thin films — what we know and what we don’t,” Proc. SPIE 8885, 888516 (2013).
[Crossref]

R. A. Weber, C. Rodriguez, D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Third harmonic microscopy of intrinsic and induced material anisotropy in dielectric thin films,” Opt. Eng. 51, 121807 (2012).
[Crossref]

Y. Xu, L. A. Emmert, M. Alhamadani, D. Patel, C. S. Menoni, and W. Rudolph, “Characterization of defect distributions in optical films and on surfaces by STEREO-LID (Spatio-TEmporally REsolved Optical Laser Induced Damage),” (2015). in preparation.

Mero, M.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[Crossref]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A 81, 317–324 (2005).
[Crossref]

Miksys, D.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirukaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254–2 standard,” Proc. SPIE 6101, 85301Y (2006).
[Crossref]

Milam, D.

Natoli, J. Y.

J. Y. Natoli, L. Gallais, B. Bertussi, M. Commandre, and C. Amra, “Toward an absolute measurement of LIDT,” Proc. SPIE 4932, 224–236 (2002).
[Crossref]

Natoli, J.-Y.

L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandre, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[Crossref]

J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
[Crossref] [PubMed]

Newnam, B. E.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser induced-damage to dielectric thin films,” Appl. Phys. Lett. 23, 607–609 (1973).
[Crossref]

Nguyen, D. N.

R. A. Weber, C. Rodriguez, D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Third harmonic microscopy of intrinsic and induced material anisotropy in dielectric thin films,” Opt. Eng. 51, 121807 (2012).
[Crossref]

Patel, D.

W. Rudolph, L. A. Emmert, Z. Sun, D. Patel, and C. S. Menoni, “Laser damage in thin films — what we know and what we don’t,” Proc. SPIE 8885, 888516 (2013).
[Crossref]

R. A. Weber, C. Rodriguez, D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Third harmonic microscopy of intrinsic and induced material anisotropy in dielectric thin films,” Opt. Eng. 51, 121807 (2012).
[Crossref]

Y. Xu, L. A. Emmert, M. Alhamadani, D. Patel, C. S. Menoni, and W. Rudolph, “Characterization of defect distributions in optical films and on surfaces by STEREO-LID (Spatio-TEmporally REsolved Optical Laser Induced Damage),” (2015). in preparation.

Picard, R. H.

Porteus, J. O.

Rakickas, T.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirukaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254–2 standard,” Proc. SPIE 6101, 85301Y (2006).
[Crossref]

Ristau, D.

L. Jensen, S. Schrameyer, M. Jupe, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Rodriguez, C.

R. A. Weber, C. Rodriguez, D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Third harmonic microscopy of intrinsic and induced material anisotropy in dielectric thin films,” Opt. Eng. 51, 121807 (2012).
[Crossref]

Rosenfeld, A.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373–S376 (1999).
[Crossref]

Rubenchik, A. M.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2842 (2001).
[Crossref]

Rudolph, W.

Y. Xu, L. A. Emmert, and W. Rudolph, “Determination of defect densities from spatiotemporally resolved optical-laser induced damage measurements,” Appl. Opt. 54, 6813–6819 (2015).
[Crossref]

W. Rudolph, L. A. Emmert, Z. Sun, D. Patel, and C. S. Menoni, “Laser damage in thin films — what we know and what we don’t,” Proc. SPIE 8885, 888516 (2013).
[Crossref]

R. A. Weber, C. Rodriguez, D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Third harmonic microscopy of intrinsic and induced material anisotropy in dielectric thin films,” Opt. Eng. 51, 121807 (2012).
[Crossref]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[Crossref]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A 81, 317–324 (2005).
[Crossref]

Y. Xu, L. A. Emmert, M. Alhamadani, D. Patel, C. S. Menoni, and W. Rudolph, “Characterization of defect distributions in optical films and on surfaces by STEREO-LID (Spatio-TEmporally REsolved Optical Laser Induced Damage),” (2015). in preparation.

Russo, R. E.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2842 (2001).
[Crossref]

Sabbah, A. J.

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A 81, 317–324 (2005).
[Crossref]

Salleo, A.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2842 (2001).
[Crossref]

Sands, T.

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2842 (2001).
[Crossref]

Schrameyer, S.

L. Jensen, S. Schrameyer, M. Jupe, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

Seitel, S. C.

Sirukaitis, V.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirukaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254–2 standard,” Proc. SPIE 6101, 85301Y (2006).
[Crossref]

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Stoian, R.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373–S376 (1999).
[Crossref]

Stolz, C. J.

Sun, Z.

W. Rudolph, L. A. Emmert, Z. Sun, D. Patel, and C. S. Menoni, “Laser damage in thin films — what we know and what we don’t,” Proc. SPIE 8885, 888516 (2013).
[Crossref]

Thomas, M. D.

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “Bds thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[Crossref]

Weakley, S. C.

Weber, R. A.

R. A. Weber, C. Rodriguez, D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Third harmonic microscopy of intrinsic and induced material anisotropy in dielectric thin films,” Opt. Eng. 51, 121807 (2012).
[Crossref]

Wu, Z.

Xu, Y.

Y. Xu, L. A. Emmert, and W. Rudolph, “Determination of defect densities from spatiotemporally resolved optical-laser induced damage measurements,” Appl. Opt. 54, 6813–6819 (2015).
[Crossref]

Y. Xu, L. A. Emmert, M. Alhamadani, D. Patel, C. S. Menoni, and W. Rudolph, “Characterization of defect distributions in optical films and on surfaces by STEREO-LID (Spatio-TEmporally REsolved Optical Laser Induced Damage),” (2015). in preparation.

Zeller, J.

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A 81, 317–324 (2005).
[Crossref]

Zhao, Q.

Appl. Opt. (5)

Appl. Phys. A (2)

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A 81, 317–324 (2005).
[Crossref]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A 69, S373–S376 (1999).
[Crossref]

Appl. Phys. Lett. (2)

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser induced-damage to dielectric thin films,” Appl. Phys. Lett. 23, 607–609 (1973).
[Crossref]

A. Salleo, F. Y. Génin, M. D. Feit, A. M. Rubenchik, T. Sands, S. S. Mao, and R. E. Russo, “Energy deposition at front and rear surfaces during picosecond laser interaction with fused silica,” Appl. Phys. Lett. 78, 2840–2842 (2001).
[Crossref]

J. Appl. Phys. (2)

L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandre, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[Crossref]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

H. Borchert, K. Darée, and M. Hugenschmidt, “Plasma formation during the interaction of picosecond and nanosecond laser pulses with BK7 glass,” J. Phys. D: Appl. Phys. 38, 300–305 (2005).
[Crossref]

Mater. Sci. Eng. B (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3) 175–190 (1997).
[Crossref]

Nat. Bur. Stand. (U.S.) Spec. Publ. (1)

S. R. Foltyn, “Spotsize effects in laser damage testing,” Nat. Bur. Stand. (U.S.) Spec. Publ. 669, 368–379 (1984).

Opt. Commun. (1)

A. During, C. Fossati, and M. Commandre, “Photothermal deflection microscopy for imaging sub-micronic defects in optical materials,” Opt. Commun. 230, 279–286 (2004).
[Crossref]

Opt. Eng. (1)

R. A. Weber, C. Rodriguez, D. N. Nguyen, L. A. Emmert, D. Patel, C. S. Menoni, and W. Rudolph, “Third harmonic microscopy of intrinsic and induced material anisotropy in dielectric thin films,” Opt. Eng. 51, 121807 (2012).
[Crossref]

Phys. Rev. B (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Proc. SPIE (5)

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “Bds thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[Crossref]

L. Jensen, S. Schrameyer, M. Jupe, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

W. Rudolph, L. A. Emmert, Z. Sun, D. Patel, and C. S. Menoni, “Laser damage in thin films — what we know and what we don’t,” Proc. SPIE 8885, 888516 (2013).
[Crossref]

J. Y. Natoli, L. Gallais, B. Bertussi, M. Commandre, and C. Amra, “Toward an absolute measurement of LIDT,” Proc. SPIE 4932, 224–236 (2002).
[Crossref]

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirukaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254–2 standard,” Proc. SPIE 6101, 85301Y (2006).
[Crossref]

Other (3)

“ISO21254-1:2011: Test methods for laser induced damage threshold — part 1: Definitions and general principles,” ISOISO21254-1:2011 (2011).

The proceedings of the Annual Laser Damage Symposium in Boulder, CO, USA from 1969–2014. Available in the Proceedings of SPIE.

Y. Xu, L. A. Emmert, M. Alhamadani, D. Patel, C. S. Menoni, and W. Rudolph, “Characterization of defect distributions in optical films and on surfaces by STEREO-LID (Spatio-TEmporally REsolved Optical Laser Induced Damage),” (2015). in preparation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental layout of a nanosecond STEREO LID measurement setup. Diodes D1, D2, D3 monitor the transmitted, scattered, and reference pulses. Examples of each are inset. The in-situ microscope (CCD1) images the excited sample site with the incident pulse as illumination source.
Fig. 2
Fig. 2 Example data from (a) scatter and (b) transmission photodiodes with an line marking the damage initiation time, td. The pulse shape from the reference diode is shown in gray.
Fig. 3
Fig. 3 (a) In situ microscope image of a damage event. The dashed ellipse indicates the beam profile (1/e2 contour) at the (tilted) sample; (b) Schematic diagram of image generation in the microscope with simulation results (sim); (c) Ablation crater inspected with a Nomarski microscope showing mini-crater at the point of damage initiation; (d) Location of 159 damage initiation points overlaid upon the beam profile.
Fig. 4
Fig. 4 Comparison of TDT and STEREO-LID characterization of a Sc2O3 film using 110 sites each. The damage probability P ˜ ( F ) of the TDT is shown in circles up to fluence values of 800 J/cm2 (the inset shows complete P ˜ ( F ) curve, the solid line is a guide to the eye.). Linear extrapolation estimates a fluence of 130 J/cm2 where the probability of damage is zero. The squares depict P(F) the probability of exciting a defect of fluence F (see text), measured with STEREO-LID.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F t h = I 0 e 2 ( x d / w x ) 2 e 2 ( y d / w y ) 2 t d e 4 ln 2 t 2 / τ p 2 d t .
P i = n = 0 M i 1 { ρ i ρ T , i + n j = 1 i + n ( F j F i ) s ρ j × [ ( F i F i + n ) s ρ T , i + n ( F i F i + n + 1 ) s ρ T , i + n ] } ,

Metrics