Abstract

Through gating spectrum plane of multiple planar aligned OLED microdisplays by a timely sequential manner, a super-multiview (SMV) three-dimensional (3D) display based on spatiotemporal-multiplexing was developed in our previous paper. But an upper limit of the allowable sub-viewing-zones (SVZs) for an OLED microdisplay did exist in the previous system, even if microdisplays with very high frame rates could be commercially available. In this manuscript, an improved spatiotemporal-multiplexing SMV displays system is developed, which removes the above limitation through controllable fusing of light beams from adjacent OLED microdisplays. The employment of a liquid-crystal panel as the gating-aperture array allows the improved system to accommodate multiple rows of OLED microdisplays for denser SVZs. Experimentally, a prototype system is demonstrated by 24 OLED microdisplays, resulting in 120 SVZs with an interval small to 1.07mm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays

Dongdong Teng, Yi Xiong, Lilin Liu, and Biao Wang
Opt. Express 23(5) 6007-6019 (2015)

Super multi-view three-dimensional display technique for portable devices

Lilin Liu, Zhiyong Pang, and Dongdong Teng
Opt. Express 24(5) 4421-4430 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
    [Crossref]
  2. Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” Proceedings of the Third International Display Workshops (IDW’96), 2, 489–492 (1996).
  3. Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
    [Crossref]
  4. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
    [Crossref] [PubMed]
  5. H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
    [Crossref]
  6. J. H. Lee, J. Park, D. Nam, S. Y. Choi, D. S. Park, and C. Y. Kim, “Optimal projector configuration design for 300-Mpixel multi-projection 3D display,” Opt. Express 21(22), 26820–26835 (2013).
    [Crossref] [PubMed]
  7. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref] [PubMed]
  8. K. Akşit, A. H. G. Niaki, E. Ulusoy, and H. Urey, “Super stereoscopy technique for comfortable and realistic 3D displays,” Opt. Lett. 39(24), 6903–6906 (2014).
    [Crossref] [PubMed]
  9. T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
    [Crossref]
  10. D. Teng, L. Liu, and B. Wang, “Super multi-view three-dimensional display through spatial-spectrum time-multiplexing of planar aligned OLED microdisplays,” Opt. Express 22(25), 31448–31457 (2014).
    [Crossref] [PubMed]
  11. Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
    [Crossref]
  12. J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
    [Crossref]
  13. D. Teng, L. Liu, and B. Wang, “Generation of 360° three-dimensional display using circular-aligned OLED microdisplays,” Opt. Express 23(3), 2058–2069 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

2013 (1)

2011 (1)

2010 (1)

2008 (1)

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[Crossref]

2005 (3)

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

2003 (1)

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

1997 (1)

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Aksit, K.

Ando, H.

Choi, S. Y.

Honda, T.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” Proceedings of the Third International Display Workshops (IDW’96), 2, 489–492 (1996).

Javidi, B.

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

Kajiki, Y.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” Proceedings of the Third International Display Workshops (IDW’96), 2, 489–492 (1996).

Kamei, H.

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Kanebako, T.

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[Crossref]

Kashiwada, S.

Kim, C. Y.

Lee, J. H.

Liu, L.

Nago, N.

Nakamura, K.

Nakanuma, H.

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Nam, D.

Niaki, A. H. G.

Park, D. S.

Park, J.

Son, J. Y.

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

Takaki, Y.

Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
[Crossref] [PubMed]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[Crossref]

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Teng, D.

Ulusoy, E.

Urano, Y.

Urey, H.

Wang, B.

Yoshikawa, H.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” Proceedings of the Third International Display Workshops (IDW’96), 2, 489–492 (1996).

J. Disp. Technol. (1)

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. SPIE (5)

T. Kanebako and Y. Takaki, “Time-multiplexing display module for high-density directional display,” Proc. SPIE 6803, 68030P (2008).
[Crossref]

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

Other (1)

Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” Proceedings of the Third International Display Workshops (IDW’96), 2, 489–492 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 The optical diagram of our previous SMV system [9].
Fig. 2
Fig. 2 Optical diagram of a projecting unit in the previous system.
Fig. 3
Fig. 3 Spatial distribution of the gating apertures for avoiding the PVZ zones.
Fig. 4
Fig. 4 Modified projecting units in the improved system.
Fig. 5
Fig. 5 Partial non-target perspective view is presented to a gating aperture as crosstalk, due to a spatial size of the gating aperture.
Fig. 6
Fig. 6 Distribution of gating apertures on the Pspectrum .
Fig. 7
Fig. 7 Arrangement of the gating-apertures for a projecting unit.
Fig. 8
Fig. 8 Photograph of the experimental display system.
Fig. 9
Fig. 9 Captured images with CCD locating at two 2mm-spaced positions on the Pobserv along the horizontal direction.
Fig. 10
Fig. 10 Images captured by the CCD located at a series of points on the Pobserv along the horizontal direction with a spatial interval of 19mm when the proposed display system works.
Fig. 11
Fig. 11 Images captured by the CCD located at three positions along vertical viewing zone: the ideal position (middle one) and positions deviating from the ideas position by ± 23mm.
Fig. 12
Fig. 12 Captured images when the largest and smallest rectangular frames are on-focus separately.
Fig. 13
Fig. 13 Geometrical diagram showing the displayed spot sizes of the 2D display planes in the 3D display space.
Fig. 14
Fig. 14 Evolutions of the lateral resolution limits (including horizontal and vertical resolution limits) as a function of f.
Fig. 15
Fig. 15 Evolutions of lateral display resolutions on the P1 and P2 plane as a function of the lateral width of the gating aperture size at f = 100mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 2 Δ D M 1 2 δ x E k F k ¯ = 1 2 d x m 1 m > 2 } M Δ D δ x + d x / ( m 1 ) < Δ D δ x
c r o s s t a l k ( % ) = n o i s e = r e f l e c t i o n + t r a n s m i s s i o n s i g n a l × 100
{ ε 1 = Δ z ( β δ x + ε d ) + ε d v 2 v 2 ( β δ x + ε d ) ε d v 2 β δ x ε 2 = Δ z ( β δ x ε d ) + ε d v 2 v 2 ( β δ x ε d ) + ε d v 2 β δ x
ε d = ( λ f p / δ x ) m m
{ ε 1 = Δ z ( D p u p i l + ε d ) + ε d v 2 v 2 ( D p u p i l + ε d ) ε d v 2 D p u p i l ε 2 = Δ z ( D p u p i l ε d ) + ε d v 2 v 2 ( D p u p i l ε d ) + ε d v 2 D p u p i l

Metrics