Abstract

The light-induced magnetization distributions for a high numerical aperture focusing configuration with an azimuthally polarized Bessel-Gaussian beam modulated by optimized vortex binary filters are investigated based on the inverse Faraday effect. It is found that, by adjusting the radii of different rings of the single/ cascaded vortex binary filters, super-long (12λ) and sub-wavelength (0.416λ) longitudinal magnetization chain with single/dual channels can be achieved in the focal region. Such well-behaved magnetization trait is attributed to the mutual effect between the optical polarization singularities of the azimuthally polarized beam and single/cascaded spiral optical elements. In addition, we find that the displacement distance of the longitudinal magnetization chain is proportional to the phase difference between the inner circle and outer ring of the vortex binary filters, thus giving rise to the steerable magnetization chain. It is expected that the research outcomes can be applied in multiple atoms trapping and transport, multilayer magneto-optical data storage, fabrication of magnetic lattices for spin wave operation and development of ultra-compact optomagnetic devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam

Weichao Yan, Zhongquan Nie, Xueru Zhang, Yuxiao Wang, and Yinglin Song
Appl. Opt. 56(7) 1940-1946 (2017)

Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams

Zhongquan Nie, Weiqiang Ding, Dongyu Li, Xueru Zhang, Yuxiao Wang, and Yinglin Song
Opt. Express 23(2) 690-701 (2015)

Theoretical guideline for generation of an ultralong magnetization needle and a super-long conveyed spherical magnetization chain

Weichao Yan, Zhongquan Nie, Xueru Zhang, Yuxiao Wang, and Yinglin Song
Opt. Express 25(19) 22268-22279 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. P. Pitaevskii, “Electric forces in a transparent dispersive medium,” Sov. Phys., JETP-USSR 12, 1008–1013 (1961).
  2. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
    [Crossref]
  3. A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
    [Crossref]
  4. L. E. Helseth, “Strongly focused electromagnetic waves in E×E* media,” Opt. Commun. 281(23), 5671–5673 (2008).
    [Crossref]
  5. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
    [Crossref] [PubMed]
  6. A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
    [Crossref] [PubMed]
  7. S. Wang, X. Li, J. Zhou, and M. Gu, “All-optically configuring the inverse Faraday effect for nanoscale perpendicular magnetic recording,” Opt. Express 23(10), 13530–13536 (2015).
    [Crossref] [PubMed]
  8. Y. Zhang, Y. Okuno, and X. Xu, “All-optical magnetic superresolution with binary pupil filters,” J. Opt. Soc. Am. B 26(7), 1379–1383 (2009).
    [Crossref]
  9. Y. Zhang and J. Bai, “Theoretical study on all-optical magnetic recording using a solid immersion lens,” J. Opt. Soc. Am. B 26(1), 176–182 (2009).
    [Crossref]
  10. L. E. Helseth, “Light-induced magnetic vortices,” Opt. Lett. 36(6), 987–989 (2011).
    [Crossref] [PubMed]
  11. Z. Nie, W. Ding, D. Li, X. Zhang, Y. Wang, and Y. Song, “Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams,” Opt. Express 23(2), 690–701 (2015).
    [Crossref] [PubMed]
  12. Y. Jiang, X. Li, and M. Gu, “Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam,” Opt. Lett. 38(16), 2957–2960 (2013).
    [Crossref] [PubMed]
  13. S. Wang, X. Li, J. Zhou, and M. Gu, “Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics,” Opt. Lett. 39(17), 5022–5025 (2014).
    [Crossref] [PubMed]
  14. W. Ma, D. Zhang, L. Zhu, and J. Chen, “Super-long longitudinal magnetization needle generated by focusing an azimuthally polarized and phase-modulated beam,” Chin. Opt. Lett. 13(5), 052101 (2015).
    [Crossref]
  15. S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
    [Crossref]
  16. C. F. Phelan, T. Hennessy, and T. Busch, “Shaping the evanescent field of optical nanofibers for cold atom trapping,” Opt. Express 21(22), 27093–27101 (2013).
    [Crossref] [PubMed]
  17. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
    [Crossref] [PubMed]
  18. F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, “State-dependent potentials in a nanofiber-based two-color trap for cold atoms,” Phys. Rev. A 88(3), 033840 (2013).
    [Crossref]
  19. P. Schneeweiss, F. L. Kien, and A. Rauschenbeutel, “Nanofiber-based atom trap created by combining fictitious and real magnetic fields,” New J. Phys. 16(1), 013014 (2014).
    [Crossref]
  20. W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86(4), 608–611 (2001).
    [Crossref] [PubMed]
  21. S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
    [Crossref]
  22. Y. Zhao, Q. Zhan, Y. Zhang, and Y. P. Li, “Creation of a three-dimensional optical chain for controllable particle delivery,” Opt. Lett. 30(8), 848–850 (2005).
    [Crossref] [PubMed]
  23. J. Wang, W. Chen, and Q. Zhan, “Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams,” J. Opt. 14(5), 055004 (2012).
    [Crossref]
  24. J. Lin, R. Chen, P. Jin, M. Cada, and Y. Ma, “Generation of longitudinally polarized optical chain by 4π focusing system,” Opt. Commun. 340, 69–73 (2015).
    [Crossref]
  25. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  26. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [Crossref]
  27. G. H. Yuan, S. B. Wei, and X. C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36(17), 3479–3481 (2011).
    [Crossref] [PubMed]
  28. Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam,” Opt. Lasers Eng. 59, 93–97 (2014).
    [Crossref]
  29. F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
    [Crossref] [PubMed]
  30. Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
    [Crossref]
  31. R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303(1), L1–L4 (2006).
    [Crossref]
  32. C. Zhao and Y. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam,” Opt. Lett. 36(12), 2251–2253 (2011).
    [Crossref] [PubMed]
  33. Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86(1), 013840 (2012).
    [Crossref]
  34. Z. Nie, G. Shi, D. Li, X. Zhang, Y. Wang, and Y. Song, “Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles,” Phys. Lett. A 379(9), 857–863 (2015).
    [Crossref]
  35. X.-L. Wang, Y. Li, J. Chen, C. S. Guo, J. Ding, and H.-T. Wang, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18(10), 10786–10795 (2010).
    [Crossref] [PubMed]
  36. H. Ye, C. Wan, K. Huang, T. Han, J. Teng, Y. S. Ping, and C. W. Qiu, “Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light,” Opt. Lett. 39(3), 630–633 (2014).
    [Crossref] [PubMed]
  37. Y. Zhang, “Generation of three-dimensional dark spots with a perfect light shell with a radially polarized Laguerre-Gaussian beam,” Appl. Opt. 49(32), 6217–6223 (2010).
    [Crossref] [PubMed]
  38. M. Yun and J. Yin, “Practical scheme to realize 2D array of BECs on an atom chip: novel 2D magneto-optical and magnetic lattices,” Opt. Express 14(7), 2539–2551 (2006).
    [Crossref] [PubMed]
  39. I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
    [Crossref]

2015 (7)

J. Lin, R. Chen, P. Jin, M. Cada, and Y. Ma, “Generation of longitudinally polarized optical chain by 4π focusing system,” Opt. Commun. 340, 69–73 (2015).
[Crossref]

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Z. Nie, G. Shi, D. Li, X. Zhang, Y. Wang, and Y. Song, “Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles,” Phys. Lett. A 379(9), 857–863 (2015).
[Crossref]

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Z. Nie, W. Ding, D. Li, X. Zhang, Y. Wang, and Y. Song, “Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams,” Opt. Express 23(2), 690–701 (2015).
[Crossref] [PubMed]

W. Ma, D. Zhang, L. Zhu, and J. Chen, “Super-long longitudinal magnetization needle generated by focusing an azimuthally polarized and phase-modulated beam,” Chin. Opt. Lett. 13(5), 052101 (2015).
[Crossref]

S. Wang, X. Li, J. Zhou, and M. Gu, “All-optically configuring the inverse Faraday effect for nanoscale perpendicular magnetic recording,” Opt. Express 23(10), 13530–13536 (2015).
[Crossref] [PubMed]

2014 (5)

H. Ye, C. Wan, K. Huang, T. Han, J. Teng, Y. S. Ping, and C. W. Qiu, “Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light,” Opt. Lett. 39(3), 630–633 (2014).
[Crossref] [PubMed]

S. Wang, X. Li, J. Zhou, and M. Gu, “Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics,” Opt. Lett. 39(17), 5022–5025 (2014).
[Crossref] [PubMed]

Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam,” Opt. Lasers Eng. 59, 93–97 (2014).
[Crossref]

P. Schneeweiss, F. L. Kien, and A. Rauschenbeutel, “Nanofiber-based atom trap created by combining fictitious and real magnetic fields,” New J. Phys. 16(1), 013014 (2014).
[Crossref]

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

2013 (4)

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, “State-dependent potentials in a nanofiber-based two-color trap for cold atoms,” Phys. Rev. A 88(3), 033840 (2013).
[Crossref]

Y. Jiang, X. Li, and M. Gu, “Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam,” Opt. Lett. 38(16), 2957–2960 (2013).
[Crossref] [PubMed]

C. F. Phelan, T. Hennessy, and T. Busch, “Shaping the evanescent field of optical nanofibers for cold atom trapping,” Opt. Express 21(22), 27093–27101 (2013).
[Crossref] [PubMed]

2012 (3)

J. Wang, W. Chen, and Q. Zhan, “Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams,” J. Opt. 14(5), 055004 (2012).
[Crossref]

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86(1), 013840 (2012).
[Crossref]

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (3)

2009 (2)

2008 (2)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

L. E. Helseth, “Strongly focused electromagnetic waves in E×E* media,” Opt. Commun. 281(23), 5671–5673 (2008).
[Crossref]

2007 (2)

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
[Crossref]

2006 (2)

2005 (1)

2003 (1)

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

2001 (1)

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86(4), 608–611 (2001).
[Crossref] [PubMed]

2000 (1)

1965 (1)

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
[Crossref]

1961 (1)

L. P. Pitaevskii, “Electric forces in a transparent dispersive medium,” Sov. Phys., JETP-USSR 12, 1008–1013 (1961).

Albrecht, M.

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Atutov, S. N.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Bai, J.

Biancalana, V.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Brown, T.

Burchianti, A.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Busch, T.

Cada, M.

J. Lin, R. Chen, P. Jin, M. Cada, and Y. Ma, “Generation of longitudinally polarized optical chain by 4π focusing system,” Opt. Commun. 340, 69–73 (2015).
[Crossref]

Cai, Y.

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86(1), 013840 (2012).
[Crossref]

C. Zhao and Y. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam,” Opt. Lett. 36(12), 2251–2253 (2011).
[Crossref] [PubMed]

Calabrese, R.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Chen, J.

Chen, R.

J. Lin, R. Chen, P. Jin, M. Cada, and Y. Ma, “Generation of longitudinally polarized optical chain by 4π focusing system,” Opt. Commun. 340, 69–73 (2015).
[Crossref]

Chen, W.

J. Wang, W. Chen, and Q. Zhan, “Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams,” J. Opt. 14(5), 055004 (2012).
[Crossref]

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Ding, J.

Ding, W.

Diorico, F.

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Dong, Y.

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86(1), 013840 (2012).
[Crossref]

Gan, F.

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

Gu, M.

Guidi, V.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Guo, C. S.

Han, T.

Hannaford, P.

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Hänsch, T. W.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86(4), 608–611 (2001).
[Crossref] [PubMed]

Hänsel, W.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86(4), 608–611 (2001).
[Crossref] [PubMed]

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Haslinger, S.

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Helseth, L. E.

L. E. Helseth, “Light-induced magnetic vortices,” Opt. Lett. 36(6), 987–989 (2011).
[Crossref] [PubMed]

L. E. Helseth, “Strongly focused electromagnetic waves in E×E* media,” Opt. Commun. 281(23), 5671–5673 (2008).
[Crossref]

Hennessy, T.

Herrera, I.

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Hertel, R.

R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303(1), L1–L4 (2006).
[Crossref]

Hommelhoff, P.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86(4), 608–611 (2001).
[Crossref] [PubMed]

Hong, M.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Huang, K.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

H. Ye, C. Wan, K. Huang, T. Han, J. Teng, Y. S. Ping, and C. W. Qiu, “Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light,” Opt. Lett. 39(3), 630–633 (2014).
[Crossref] [PubMed]

Hufnagel, C.

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Itoh, A.

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Jiang, Y.

Jiao, J.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Jin, P.

J. Lin, R. Chen, P. Jin, M. Cada, and Y. Ma, “Generation of longitudinally polarized optical chain by 4π focusing system,” Opt. Commun. 340, 69–73 (2015).
[Crossref]

Juodkazis, S.

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Khorsand, A. R.

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

Kien, F. L.

P. Schneeweiss, F. L. Kien, and A. Rauschenbeutel, “Nanofiber-based atom trap created by combining fictitious and real magnetic fields,” New J. Phys. 16(1), 013014 (2014).
[Crossref]

Kimel, A. V.

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
[Crossref]

Kirilyuk, A.

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Koller, C.

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Le Kien, F.

F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, “State-dependent potentials in a nanofiber-based two-color trap for cold atoms,” Phys. Rev. A 88(3), 033840 (2013).
[Crossref]

Li, D.

Z. Nie, G. Shi, D. Li, X. Zhang, Y. Wang, and Y. Song, “Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles,” Phys. Lett. A 379(9), 857–863 (2015).
[Crossref]

Z. Nie, W. Ding, D. Li, X. Zhang, Y. Wang, and Y. Song, “Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams,” Opt. Express 23(2), 690–701 (2015).
[Crossref] [PubMed]

Li, X.

Li, Y.

Li, Y. P.

Li, Z.

Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam,” Opt. Lasers Eng. 59, 93–97 (2014).
[Crossref]

Lin, J.

J. Lin, R. Chen, P. Jin, M. Cada, and Y. Ma, “Generation of longitudinally polarized optical chain by 4π focusing system,” Opt. Commun. 340, 69–73 (2015).
[Crossref]

Lippok, N.

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Luo, X.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Ma, W.

Ma, Y.

J. Lin, R. Chen, P. Jin, M. Cada, and Y. Ma, “Generation of longitudinally polarized optical chain by 4π focusing system,” Opt. Commun. 340, 69–73 (2015).
[Crossref]

Mai, B.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Majer, J.

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Malmstrom, L. D.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
[Crossref]

Marinelli, C.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Mariotti, E.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

McLean, R.

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Michaux, P.

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Minniberger, S.

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Moi, L.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Nie, Z.

Z. Nie, G. Shi, D. Li, X. Zhang, Y. Wang, and Y. Song, “Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles,” Phys. Lett. A 379(9), 857–863 (2015).
[Crossref]

Z. Nie, W. Ding, D. Li, X. Zhang, Y. Wang, and Y. Song, “Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams,” Opt. Express 23(2), 690–701 (2015).
[Crossref] [PubMed]

Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam,” Opt. Lasers Eng. 59, 93–97 (2014).
[Crossref]

Nissen, D.

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Novotny, C.

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Okuno, Y.

Pershan, P. S.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
[Crossref]

Phelan, C. F.

Ping, Y. S.

Pitaevskii, L. P.

L. P. Pitaevskii, “Electric forces in a transparent dispersive medium,” Sov. Phys., JETP-USSR 12, 1008–1013 (1961).

Qin, F.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Qiu, C.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Qiu, C. W.

Rasing, T.

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Rauschenbeutel, A.

P. Schneeweiss, F. L. Kien, and A. Rauschenbeutel, “Nanofiber-based atom trap created by combining fictitious and real magnetic fields,” New J. Phys. 16(1), 013014 (2014).
[Crossref]

F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, “State-dependent potentials in a nanofiber-based two-color trap for cold atoms,” Phys. Rev. A 88(3), 033840 (2013).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Reichel, J.

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86(4), 608–611 (2001).
[Crossref] [PubMed]

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Rudavets, A. G.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Savoini, M.

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

Scansani, E.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Schmiedmayer, J.

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Schneeweiss, P.

P. Schneeweiss, F. L. Kien, and A. Rauschenbeutel, “Nanofiber-based atom trap created by combining fictitious and real magnetic fields,” New J. Phys. 16(1), 013014 (2014).
[Crossref]

F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, “State-dependent potentials in a nanofiber-based two-color trap for cold atoms,” Phys. Rev. A 88(3), 033840 (2013).
[Crossref]

Schneider, S.

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Shi, G.

Z. Nie, G. Shi, D. Li, X. Zhang, Y. Wang, and Y. Song, “Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles,” Phys. Lett. A 379(9), 857–863 (2015).
[Crossref]

Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam,” Opt. Lasers Eng. 59, 93–97 (2014).
[Crossref]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Sidorov, A.

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Song, Y.

Z. Nie, G. Shi, D. Li, X. Zhang, Y. Wang, and Y. Song, “Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles,” Phys. Lett. A 379(9), 857–863 (2015).
[Crossref]

Z. Nie, W. Ding, D. Li, X. Zhang, Y. Wang, and Y. Song, “Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams,” Opt. Express 23(2), 690–701 (2015).
[Crossref] [PubMed]

Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam,” Opt. Lasers Eng. 59, 93–97 (2014).
[Crossref]

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

Surendran, P.

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Teng, J.

Tomassetti, L.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Tsukamoto, A.

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

van der Ziel, J. P.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
[Crossref]

Veronesi, S.

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

Wan, C.

Wang, F.

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86(1), 013840 (2012).
[Crossref]

Wang, H.

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Wang, H.-T.

Wang, J.

J. Wang, W. Chen, and Q. Zhan, “Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams,” J. Opt. 14(5), 055004 (2012).
[Crossref]

Wang, S.

Wang, X.-L.

Wang, Y.

Z. Nie, G. Shi, D. Li, X. Zhang, Y. Wang, and Y. Song, “Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles,” Phys. Lett. A 379(9), 857–863 (2015).
[Crossref]

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Z. Nie, W. Ding, D. Li, X. Zhang, Y. Wang, and Y. Song, “Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams,” Opt. Express 23(2), 690–701 (2015).
[Crossref] [PubMed]

Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam,” Opt. Lasers Eng. 59, 93–97 (2014).
[Crossref]

Wei, J.

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

Wei, S. B.

Whitlock, S.

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Wu, J.

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Xu, X.

Ye, H.

Yin, J.

Youngworth, K.

Yuan, G. H.

Yuan, X. C.

Yun, M.

Zha, Y.

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

Zhan, Q.

J. Wang, W. Chen, and Q. Zhan, “Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams,” J. Opt. 14(5), 055004 (2012).
[Crossref]

Y. Zhao, Q. Zhan, Y. Zhang, and Y. P. Li, “Creation of a three-dimensional optical chain for controllable particle delivery,” Opt. Lett. 30(8), 848–850 (2005).
[Crossref] [PubMed]

Zhang, D.

Zhang, X.

Z. Nie, W. Ding, D. Li, X. Zhang, Y. Wang, and Y. Song, “Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams,” Opt. Express 23(2), 690–701 (2015).
[Crossref] [PubMed]

Z. Nie, G. Shi, D. Li, X. Zhang, Y. Wang, and Y. Song, “Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles,” Phys. Lett. A 379(9), 857–863 (2015).
[Crossref]

Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam,” Opt. Lasers Eng. 59, 93–97 (2014).
[Crossref]

Zhang, Y.

Zhao, C.

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86(1), 013840 (2012).
[Crossref]

C. Zhao and Y. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam,” Opt. Lett. 36(12), 2251–2253 (2011).
[Crossref] [PubMed]

Zhao, Y.

Zhou, J.

Zhu, L.

Appl. Opt. (1)

Appl. Phys. B (1)

S. Minniberger, F. Diorico, S. Haslinger, C. Hufnagel, C. Novotny, N. Lippok, J. Majer, C. Koller, S. Schneider, and J. Schmiedmayer, “Magnetic conveyor belt transport of ultracold atoms to a superconducting atomchip,” Appl. Phys. B 116(4), 1017–1021 (2014).
[Crossref]

Chin. Opt. Lett. (1)

J. Magn. Magn. Mater. (1)

R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303(1), L1–L4 (2006).
[Crossref]

J. Opt. (2)

Y. Zha, J. Wei, H. Wang, and F. Gan, “Creation of an ultra-long depth of focus super-resolution longitudinally polarized beam with a ternary optical element,” J. Opt. 15(7), 075703 (2013).
[Crossref]

J. Wang, W. Chen, and Q. Zhan, “Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams,” J. Opt. 14(5), 055004 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

I. Herrera, Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, R. McLean, A. Sidorov, M. Albrecht, and P. Hannaford, “Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip,” J. Phys. D Appl. Phys. 48(11), 115002 (2015).
[Crossref]

Laser Photonics Rev. (1)

A. V. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials,” Laser Photonics Rev. 1(3), 275–287 (2007).
[Crossref]

Nat. Photonics (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

New J. Phys. (1)

P. Schneeweiss, F. L. Kien, and A. Rauschenbeutel, “Nanofiber-based atom trap created by combining fictitious and real magnetic fields,” New J. Phys. 16(1), 013014 (2014).
[Crossref]

Opt. Commun. (2)

J. Lin, R. Chen, P. Jin, M. Cada, and Y. Ma, “Generation of longitudinally polarized optical chain by 4π focusing system,” Opt. Commun. 340, 69–73 (2015).
[Crossref]

L. E. Helseth, “Strongly focused electromagnetic waves in E×E* media,” Opt. Commun. 281(23), 5671–5673 (2008).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

Z. Nie, Z. Li, G. Shi, X. Zhang, Y. Wang, and Y. Song, “Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam,” Opt. Lasers Eng. 59, 93–97 (2014).
[Crossref]

Opt. Lett. (7)

Phys. Lett. A (1)

Z. Nie, G. Shi, D. Li, X. Zhang, Y. Wang, and Y. Song, “Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles,” Phys. Lett. A 379(9), 857–863 (2015).
[Crossref]

Phys. Rev. A (3)

Y. Dong, F. Wang, C. Zhao, and Y. Cai, “Effect of spatial coherence on propagation, tight focusing and radiation forces of an azimuthally polarized beam,” Phys. Rev. A 86(1), 013840 (2012).
[Crossref]

S. N. Atutov, R. Calabrese, V. Guidi, B. Mai, A. G. Rudavets, E. Scansani, L. Tomassetti, V. Biancalana, A. Burchianti, C. Marinelli, E. Mariotti, L. Moi, and S. Veronesi, “Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption,” Phys. Rev. A 67(5), 053401 (2003).
[Crossref]

F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, “State-dependent potentials in a nanofiber-based two-color trap for cold atoms,” Phys. Rev. A 88(3), 033840 (2013).
[Crossref]

Phys. Rev. Lett. (5)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010).
[Crossref] [PubMed]

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15(5), 190–193 (1965).
[Crossref]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[Crossref] [PubMed]

A. R. Khorsand, M. Savoini, A. Kirilyuk, A. V. Kimel, A. Tsukamoto, A. Itoh, and T. Rasing, “Role of magnetic circular dichroism in all-optical magnetic recording,” Phys. Rev. Lett. 108(12), 127205 (2012).
[Crossref] [PubMed]

W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Magnetic conveyor belt for transporting and merging trapped atom clouds,” Phys. Rev. Lett. 86(4), 608–611 (2001).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Qin, K. Huang, J. Wu, J. Jiao, X. Luo, C. Qiu, and M. Hong, “Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light,” Sci. Rep. 5, 9977 (2015).
[Crossref] [PubMed]

Sov. Phys., JETP-USSR (1)

L. P. Pitaevskii, “Electric forces in a transparent dispersive medium,” Sov. Phys., JETP-USSR 12, 1008–1013 (1961).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic setup to generate the sub-wavelength longitudinal magnetization chain. (b) Sketch diagram of a vortex binary filter, which is composed of a binary filter and a spiral phase plate.
Fig. 2
Fig. 2 (a) Transversally polarized optical chain with single channel for Δφ = 0, and (b1)-(b4) longitudinally polarized magnetic chain with single channel at various Δφ values in the r-z plane
Fig. 3
Fig. 3 Magnetization distribution (a) in the focal region at Δφ = 0 and (b) along the optical axis at various Δφ values
Fig. 4
Fig. 4 (a) Transversally polarized optical chain with dual channels for Δφ = 0, and (b1)-(b4) longitudinally polarized magnetic chain with dual channels at various Δφ values in the r-z plane
Fig. 5
Fig. 5 Magnetization distribution (a) in the focal region at Δφ = π and (b) along r = 0.95λ axis at various Δφ values
Fig. 6
Fig. 6 Displacement distance of the longitudinal magnetization chain z 0 as a function of Δφ

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T φ = { e j ( φ + Δ φ ) 0 r R 1 e j φ R 2 r R 0
E ( r , ϕ , z ) = [ E r E ϕ E z ] = [ A 0 ( I 0 + I 2 ) j A 0 ( I 0 I 2 ) 0 ] ,
I n = 0 θ max T ϕ cos θ sin θ l 0 ( θ ) e j k z cos θ J n ( k r sin θ ) d θ .
T ϕ = { e j ( ϕ + Δ φ ) 0 r R 1 e j ϕ R 2 r R 0
M ( r , φ , z ) = j γ E × E * ,
M = 2 γ | A | 2 Re ( E r E ϕ ) e z ,
T φ = { e j ( 2 φ + Δ φ ) 0 r R 1 e 2 j φ R 2 r R 0 T ϕ = { e j ( 2 ϕ + Δ φ ) 0 r R 1 e 2 j ϕ R 2 r R 0

Metrics