Abstract

This work explores and evaluates the effect of diffuse light reflection on the accuracy of indoor localization systems based on visible light communication (VLC) in a high reflectivity environment using a received signal strength indication (RSSI) technique. The effect of the essential receiver (Rx) and transmitter (Tx) parameters on the localization error with different transmitted LED power and wall reflectivity factors is investigated at the worst Rx coordinates for a directed/overall link. Since this work assumes harsh operating conditions (i.e., a multipath model, high reflectivity surfaces, worst Rx position), an error of ≥ 1.46 m is found. To achieve a localization error in the range of 30 cm under these conditions with moderate LED power (i.e., P = 0.45 W), low reflectivity walls (i.e., ρ = 0.1) should be used, which would enable a localization error of approximately 7 mm at the room’s center.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of multipath effects on theoretical accuracy of TOA-based indoor VLC positioning system

Xuqing Sun, Jingyuan Duan, Yonggang Zou, and Ancun Shi
Photon. Res. 3(6) 296-299 (2015)

Indoor three-dimensional high-precision positioning system with bat algorithm based on visible light communication

Li Huang, Ping Wang, Zhongyu Liu, Xi Nan, Lingling Jiao, and Lixin Guo
Appl. Opt. 58(9) 2226-2234 (2019)

10  Gbps Mobile Visible Light Communication System Employing Angle Diversity, Imaging Receivers, and Relay Nodes

Ahmed Taha Hussein and Jaafar M. H. Elmirghani
J. Opt. Commun. Netw. 7(8) 718-735 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
    [Crossref]
  2. H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
    [Crossref]
  3. L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
    [Crossref]
  4. C. Quintana, V. Guerra, J. Rufo, J. Rabadan, and R. Perez-Jimenez, “Reading lamp-based visible light communication system for in-flight entertainment,” IEEE Trans. Consum. Electron. 59(1), 31–37 (2013).
    [Crossref]
  5. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
    [Crossref]
  6. T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
    [Crossref]
  7. I. C. Rust and H. H. Asada, “A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection,” in 2012 IEEE International Conference on Robotics and Automation (ICRA), (2012), pp. 2445–2450.
    [Crossref]
  8. J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
    [Crossref]
  9. M. Nakajima and S. Haruyama, “New indoor navigation system for visually impaired people using visible light communication,” Eurasip. J. Wirel. Comm. 2013(1), 37 (2013).
    [Crossref]
  10. L. Hui, H. Darabi, P. Banerjee, and L. Jing, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37, 1067–1080 (2007).
  11. Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” Commun. Surveys Tuts. 11(1), 13–32 (2009).
    [Crossref]
  12. J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” Computer 34(8), 57–66 (2001).
    [Crossref]
  13. Y. Se-Hoon, J. Eun-Mi, and H. Sang-Kook, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett. 17(9), 1834–1837 (2013).
    [Crossref]
  14. A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” Wireless Commun. 14(6), 6–12 (2007).
    [Crossref]
  15. S.-K. Han, E.-M. Jeong, D.-R. Kim, Y.-H. Son, S.-H. Yang, and H.-S. Kim, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
    [Crossref]
  16. H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
    [Crossref]
  17. W. Zhang, M. I. S. Chowdhury, and M. Kavehrad, “Asynchronous indoor positioning system based on visible light communications,” Opt. Eng. 53(4), 045105 (2014).
    [Crossref]
  18. H.-S. Kim, D.-H. Kwon, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Channel assignment technique for RF frequency reuse in CA-VLC-based accurate optical indoor localization,” J. Lightwave Technol. 32(14), 2544–2555 (2014).
    [Crossref]
  19. S.-Y. Jung, S. R. Lee, and C.-S. Park, “Indoor location awareness based on received signal strength ratio and time division multiplexing using light-emitting diode light,” Opt. Eng. 53(1), 016106 (2014).
    [Crossref]
  20. S.-K. Han, E.-M. Jeong, S.-H. Yang, and H.-S. Kim, “Tilted receiver angle error compensated indoor positioning system based on visible light communication,” Electron. Lett. 49(14), 890–892 (2013).
    [Crossref]
  21. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [Crossref]
  22. K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
    [Crossref]
  23. Z. Xueli, D. Jingyuan, F. Yuegang, and S. Ancun, “Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator,” J. Lightwave Technol. 32(21), 4180–4186 (2014).
    [Crossref]
  24. F. Reichenbach, A. Born, D. Timmermann, and R. Bill, “A distributed linear least squares method for precise localization with low complexity in wireless sensor networks,” in Proceedings of the Second IEEE International Conference on Distributed Computing in Sensor Systems (Springer-Verlag, San Francisco, CA, 2006), pp. 514–528.
    [Crossref]
  25. T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
    [Crossref]
  26. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  27. J. Grubor, S. Randel, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” J. Lightwave Technol. 26(24), 3883–3892 (2008).
    [Crossref]
  28. H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
    [Crossref]

2014 (5)

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

S.-Y. Jung, S. R. Lee, and C.-S. Park, “Indoor location awareness based on received signal strength ratio and time division multiplexing using light-emitting diode light,” Opt. Eng. 53(1), 016106 (2014).
[Crossref]

Z. Xueli, D. Jingyuan, F. Yuegang, and S. Ancun, “Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator,” J. Lightwave Technol. 32(21), 4180–4186 (2014).
[Crossref]

W. Zhang, M. I. S. Chowdhury, and M. Kavehrad, “Asynchronous indoor positioning system based on visible light communications,” Opt. Eng. 53(4), 045105 (2014).
[Crossref]

H.-S. Kim, D.-H. Kwon, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Channel assignment technique for RF frequency reuse in CA-VLC-based accurate optical indoor localization,” J. Lightwave Technol. 32(14), 2544–2555 (2014).
[Crossref]

2013 (9)

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, S.-H. Yang, and H.-S. Kim, “Tilted receiver angle error compensated indoor positioning system based on visible light communication,” Electron. Lett. 49(14), 890–892 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, D.-R. Kim, Y.-H. Son, S.-H. Yang, and H.-S. Kim, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

Y. Se-Hoon, J. Eun-Mi, and H. Sang-Kook, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett. 17(9), 1834–1837 (2013).
[Crossref]

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
[Crossref]

M. Nakajima and S. Haruyama, “New indoor navigation system for visually impaired people using visible light communication,” Eurasip. J. Wirel. Comm. 2013(1), 37 (2013).
[Crossref]

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

C. Quintana, V. Guerra, J. Rufo, J. Rabadan, and R. Perez-Jimenez, “Reading lamp-based visible light communication system for in-flight entertainment,” IEEE Trans. Consum. Electron. 59(1), 31–37 (2013).
[Crossref]

2012 (2)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

2011 (1)

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

2009 (3)

Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” Commun. Surveys Tuts. 11(1), 13–32 (2009).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
[Crossref]

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

2008 (1)

2007 (2)

L. Hui, H. Darabi, P. Banerjee, and L. Jing, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37, 1067–1080 (2007).

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” Wireless Commun. 14(6), 6–12 (2007).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

2001 (1)

J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” Computer 34(8), 57–66 (2001).
[Crossref]

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Ancun, S.

Z. Xueli, D. Jingyuan, F. Yuegang, and S. Ancun, “Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator,” J. Lightwave Technol. 32(21), 4180–4186 (2014).
[Crossref]

Andoh, M.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Arai, S.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Armstrong, J.

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
[Crossref]

Asada, H. H.

I. C. Rust and H. H. Asada, “A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection,” in 2012 IEEE International Conference on Robotics and Automation (ICRA), (2012), pp. 2445–2450.
[Crossref]

Banerjee, P.

L. Hui, H. Darabi, P. Banerjee, and L. Jing, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37, 1067–1080 (2007).

Barry, J. R.

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Borriello, G.

J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” Computer 34(8), 57–66 (2001).
[Crossref]

Boukerche, A.

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” Wireless Commun. 14(6), 6–12 (2007).
[Crossref]

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Chowdhury, M. I. S.

W. Zhang, M. I. S. Chowdhury, and M. Kavehrad, “Asynchronous indoor positioning system based on visible light communications,” Opt. Eng. 53(4), 045105 (2014).
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Darabi, H.

L. Hui, H. Darabi, P. Banerjee, and L. Jing, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37, 1067–1080 (2007).

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
[Crossref]

Eun-Mi, J.

Y. Se-Hoon, J. Eun-Mi, and H. Sang-Kook, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett. 17(9), 1834–1837 (2013).
[Crossref]

Fujii, T.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Grobe, L.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Grubor, J.

Gu, Y.

Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” Commun. Surveys Tuts. 11(1), 13–32 (2009).
[Crossref]

Guerra, V.

C. Quintana, V. Guerra, J. Rufo, J. Rabadan, and R. Perez-Jimenez, “Reading lamp-based visible light communication system for in-flight entertainment,” IEEE Trans. Consum. Electron. 59(1), 31–37 (2013).
[Crossref]

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
[Crossref]

Han, S.-K.

H.-S. Kim, D.-H. Kwon, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Channel assignment technique for RF frequency reuse in CA-VLC-based accurate optical indoor localization,” J. Lightwave Technol. 32(14), 2544–2555 (2014).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, D.-R. Kim, Y.-H. Son, S.-H. Yang, and H.-S. Kim, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, S.-H. Yang, and H.-S. Kim, “Tilted receiver angle error compensated indoor positioning system based on visible light communication,” Electron. Lett. 49(14), 890–892 (2013).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Harada, T.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Hartlieb, F.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Haruyama, S.

M. Nakajima and S. Haruyama, “New indoor navigation system for visually impaired people using visible light communication,” Eurasip. J. Wirel. Comm. 2013(1), 37 (2013).
[Crossref]

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

Hightower, J.

J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” Computer 34(8), 57–66 (2001).
[Crossref]

Hilt, J.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Hui, L.

L. Hui, H. Darabi, P. Banerjee, and L. Jing, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37, 1067–1080 (2007).

Jeong, E.-M.

S.-K. Han, E.-M. Jeong, D.-R. Kim, Y.-H. Son, S.-H. Yang, and H.-S. Kim, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, S.-H. Yang, and H.-S. Kim, “Tilted receiver angle error compensated indoor positioning system based on visible light communication,” Electron. Lett. 49(14), 890–892 (2013).
[Crossref]

Jing, L.

L. Hui, H. Darabi, P. Banerjee, and L. Jing, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37, 1067–1080 (2007).

Jingyuan, D.

Z. Xueli, D. Jingyuan, F. Yuegang, and S. Ancun, “Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator,” J. Lightwave Technol. 32(21), 4180–4186 (2014).
[Crossref]

Jovicic, A.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Jung, S.-Y.

S.-Y. Jung, S. R. Lee, and C.-S. Park, “Indoor location awareness based on received signal strength ratio and time division multiplexing using light-emitting diode light,” Opt. Eng. 53(1), 016106 (2014).
[Crossref]

Jungnickel, V.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Kagawa, K.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Kavehrad, M.

W. Zhang, M. I. S. Chowdhury, and M. Kavehrad, “Asynchronous indoor positioning system based on visible light communications,” Opt. Eng. 53(4), 045105 (2014).
[Crossref]

Kawahito, S.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Kim, D.-R.

S.-K. Han, E.-M. Jeong, D.-R. Kim, Y.-H. Son, S.-H. Yang, and H.-S. Kim, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Kim, H.-S.

H.-S. Kim, D.-H. Kwon, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Channel assignment technique for RF frequency reuse in CA-VLC-based accurate optical indoor localization,” J. Lightwave Technol. 32(14), 2544–2555 (2014).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, S.-H. Yang, and H.-S. Kim, “Tilted receiver angle error compensated indoor positioning system based on visible light communication,” Electron. Lett. 49(14), 890–892 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, D.-R. Kim, Y.-H. Son, S.-H. Yang, and H.-S. Kim, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Komine, T.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Kottke, C.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Kwon, D.-H.

Langer, K. D.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

J. Grubor, S. Randel, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” J. Lightwave Technol. 26(24), 3883–3892 (2008).
[Crossref]

Lassak, F.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Lee, J. H.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

Lee, K.

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

Lee, S. R.

S.-Y. Jung, S. R. Lee, and C.-S. Park, “Indoor location awareness based on received signal strength ratio and time division multiplexing using light-emitting diode light,” Opt. Eng. 53(1), 016106 (2014).
[Crossref]

Li, J.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Lo, A.

Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” Commun. Surveys Tuts. 11(1), 13–32 (2009).
[Crossref]

Loureiro, A. A. F.

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” Wireless Commun. 14(6), 6–12 (2007).
[Crossref]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
[Crossref]

Nakagawa, M.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Nakajima, M.

M. Nakajima and S. Haruyama, “New indoor navigation system for visually impaired people using visible light communication,” Eurasip. J. Wirel. Comm. 2013(1), 37 (2013).
[Crossref]

Nakamura, E. F.

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” Wireless Commun. 14(6), 6–12 (2007).
[Crossref]

Neild, A.

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
[Crossref]

Niemegeers, I.

Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” Commun. Surveys Tuts. 11(1), 13–32 (2009).
[Crossref]

Okada, H.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Oliveira, H. A. B.

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” Wireless Commun. 14(6), 6–12 (2007).
[Crossref]

Paraskevopoulos, A.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Park, C.-S.

S.-Y. Jung, S. R. Lee, and C.-S. Park, “Indoor location awareness based on received signal strength ratio and time division multiplexing using light-emitting diode light,” Opt. Eng. 53(1), 016106 (2014).
[Crossref]

Park, H.

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

Perez-Jimenez, R.

C. Quintana, V. Guerra, J. Rufo, J. Rabadan, and R. Perez-Jimenez, “Reading lamp-based visible light communication system for in-flight entertainment,” IEEE Trans. Consum. Electron. 59(1), 31–37 (2013).
[Crossref]

Quintana, C.

C. Quintana, V. Guerra, J. Rufo, J. Rabadan, and R. Perez-Jimenez, “Reading lamp-based visible light communication system for in-flight entertainment,” IEEE Trans. Consum. Electron. 59(1), 31–37 (2013).
[Crossref]

Rabadan, J.

C. Quintana, V. Guerra, J. Rufo, J. Rabadan, and R. Perez-Jimenez, “Reading lamp-based visible light communication system for in-flight entertainment,” IEEE Trans. Consum. Electron. 59(1), 31–37 (2013).
[Crossref]

Randel, S.

Richardson, T.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Rufo, J.

C. Quintana, V. Guerra, J. Rufo, J. Rabadan, and R. Perez-Jimenez, “Reading lamp-based visible light communication system for in-flight entertainment,” IEEE Trans. Consum. Electron. 59(1), 31–37 (2013).
[Crossref]

Rust, I. C.

I. C. Rust and H. H. Asada, “A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection,” in 2012 IEEE International Conference on Robotics and Automation (ICRA), (2012), pp. 2445–2450.
[Crossref]

Sang-Kook, H.

Y. Se-Hoon, J. Eun-Mi, and H. Sang-Kook, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett. 17(9), 1834–1837 (2013).
[Crossref]

Schulz, D.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Se-Hoon, Y.

Y. Se-Hoon, J. Eun-Mi, and H. Sang-Kook, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett. 17(9), 1834–1837 (2013).
[Crossref]

Sekercioglu, Y.

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
[Crossref]

Son, Y.-H.

H.-S. Kim, D.-H. Kwon, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Channel assignment technique for RF frequency reuse in CA-VLC-based accurate optical indoor localization,” J. Lightwave Technol. 32(14), 2544–2555 (2014).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, D.-R. Kim, Y.-H. Son, S.-H. Yang, and H.-S. Kim, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Takai, I.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Walewski, J. W.

Xueli, Z.

Z. Xueli, D. Jingyuan, F. Yuegang, and S. Ancun, “Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator,” J. Lightwave Technol. 32(21), 4180–4186 (2014).
[Crossref]

Yamazato, T.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Yang, S.-H.

H.-S. Kim, D.-H. Kwon, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Channel assignment technique for RF frequency reuse in CA-VLC-based accurate optical indoor localization,” J. Lightwave Technol. 32(14), 2544–2555 (2014).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “An indoor visible light communication positioning system using a RF carrier allocation technique,” J. Lightwave Technol. 31(1), 134–144 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, D.-R. Kim, Y.-H. Son, S.-H. Yang, and H.-S. Kim, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, S.-H. Yang, and H.-S. Kim, “Tilted receiver angle error compensated indoor positioning system based on visible light communication,” Electron. Lett. 49(14), 890–892 (2013).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

Yasutomi, K.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Yendo, T.

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

Yuegang, F.

Z. Xueli, D. Jingyuan, F. Yuegang, and S. Ancun, “Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator,” J. Lightwave Technol. 32(21), 4180–4186 (2014).
[Crossref]

Zhang, W.

W. Zhang, M. I. S. Chowdhury, and M. Kavehrad, “Asynchronous indoor positioning system based on visible light communications,” Opt. Eng. 53(4), 045105 (2014).
[Crossref]

Commun. Surveys Tuts. (1)

Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” Commun. Surveys Tuts. 11(1), 13–32 (2009).
[Crossref]

Computer (1)

J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” Computer 34(8), 57–66 (2001).
[Crossref]

Electron. Lett. (2)

S.-K. Han, E.-M. Jeong, D.-R. Kim, Y.-H. Son, S.-H. Yang, and H.-S. Kim, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

S.-K. Han, E.-M. Jeong, S.-H. Yang, and H.-S. Kim, “Tilted receiver angle error compensated indoor positioning system based on visible light communication,” Electron. Lett. 49(14), 890–892 (2013).
[Crossref]

Eurasip. J. Wirel. Comm. (1)

M. Nakajima and S. Haruyama, “New indoor navigation system for visually impaired people using visible light communication,” Eurasip. J. Wirel. Comm. 2013(1), 37 (2013).
[Crossref]

IEEE Commun. Lett. (3)

Y. Se-Hoon, J. Eun-Mi, and H. Sang-Kook, “Indoor location estimation based on LED visible light communication using multiple optical receivers,” IEEE Commun. Lett. 17(9), 1834–1837 (2013).
[Crossref]

K. Lee, H. Park, and J. R. Barry, “Indoor channel characteristics for visible light communications,” IEEE Commun. Lett. 15(2), 217–219 (2011).
[Crossref]

H.-S. Kim, D.-R. Kim, S.-H. Yang, Y.-H. Son, and S.-K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett. 16(4), 526–529 (2012).
[Crossref]

IEEE Commun. Mag. (4)

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. D. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, and S. Kawahito, “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag. 52(7), 88–97 (2014).
[Crossref]

J. Armstrong, Y. Sekercioglu, and A. Neild, “Visible light positioning: a roadmap for international standardization,” IEEE Commun. Mag. 51(12), 68–73 (2013).
[Crossref]

IEEE Photonics J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

IEEE Trans. Consum. Electron. (3)

C. Quintana, V. Guerra, J. Rufo, J. Rabadan, and R. Perez-Jimenez, “Reading lamp-based visible light communication system for in-flight entertainment,” IEEE Trans. Consum. Electron. 59(1), 31–37 (2013).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor broadcasting via white LEDs and OFDM,” IEEE Trans. Consum. Electron. 55(3), 1127–1134 (2009).
[Crossref]

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

IEEE Trans. Syst., Man, Cybern. C (1)

L. Hui, H. Darabi, P. Banerjee, and L. Jing, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C 37, 1067–1080 (2007).

IEEE Trans. Wirel. Commun. (1)

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8(6), 2892–2900 (2009).
[Crossref]

J. Lightwave Technol. (4)

Opt. Eng. (2)

W. Zhang, M. I. S. Chowdhury, and M. Kavehrad, “Asynchronous indoor positioning system based on visible light communications,” Opt. Eng. 53(4), 045105 (2014).
[Crossref]

S.-Y. Jung, S. R. Lee, and C.-S. Park, “Indoor location awareness based on received signal strength ratio and time division multiplexing using light-emitting diode light,” Opt. Eng. 53(1), 016106 (2014).
[Crossref]

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Wireless Commun. (1)

A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” Wireless Commun. 14(6), 6–12 (2007).
[Crossref]

Other (2)

I. C. Rust and H. H. Asada, “A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection,” in 2012 IEEE International Conference on Robotics and Automation (ICRA), (2012), pp. 2445–2450.
[Crossref]

F. Reichenbach, A. Born, D. Timmermann, and R. Bill, “A distributed linear least squares method for precise localization with low complexity in wireless sensor networks,” in Proceedings of the Second IEEE International Conference on Distributed Computing in Sensor Systems (Springer-Verlag, San Francisco, CA, 2006), pp. 514–528.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 LOS link geometry between LED and Rx.
Fig. 2
Fig. 2 Geometry of NLOS link.
Fig. 3
Fig. 3 Room configuration.
Fig. 4
Fig. 4 Received optical power due to (a) LOS path, (b) first reflection, (c) second reflection, (d) third reflection, (e) total diffuse power, and (f) overall link.
Fig. 5
Fig. 5 Normalized impulse response at (0.2, 0.2, 0.85).
Fig. 6
Fig. 6 SNR distribution across quadrant of room in case of (a) LOS, (b) diffuse, and (c) overall (LOS/NLOS) link.
Fig. 7
Fig. 7 Localization error distribution at different Rx positions due to (a) LOS link and (b) overall link.
Fig. 8
Fig. 8 Localization error values for different Rx FOV values at (0.2, 0.2, 0.85) for (a) LOS link and (b) overall link.
Fig. 9
Fig. 9 Localization error for different Rx noise BWs at (0.2, 0.2, 0.85) for (a) LOS link and (b) overall link.
Fig. 10
Fig. 10 Localization error at different Rx heights due to (a) LOS link near center and (b) LOS link at corner (0.2, 0.2).
Fig. 11
Fig. 11 Localization error at different Rx heights due to overall link at room’s corner (0.2, 0.2).
Fig. 12
Fig. 12 Localization error for different Tx semi-radiation angles at (0.2, 0.2) due to (a) LOS link and (b) overall link.
Fig. 13
Fig. 13 Localization error at different wall reflectivities when Rx is positioned at (0.2, 0.2) for different (a) Rx FOVs, (b) noise BWs, (c) Rx heights, and (d)Tx semi-radiation angles (θ1/2).

Tables (5)

Tables Icon

Table 1 Noise Parameter Values

Tables Icon

Table 2 Summary of Relevant Parameters

Tables Icon

Table 3 Summary of Received Optical Power

Tables Icon

Table 4 Received Power Values from Nearest Three LEDs at Different Rx FOV Values

Tables Icon

Table 5 Received Power Values from Nearest Three LEDs at Different Tx Semi-radiation Angles (θ1/2)

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P LOS = P t d 0 2 R 0 (φ) A eff (θ)
A eff (θ)={ A T s (θ)g(θ)cosθ,θFOV 0,θ>FOV
R 0 (φ)=[(m+1)/2π)] cos m φ
m=-ln(2)/ln(cos 1/2 ))
P LOS ={ P t (m+1) A d 0 2 cos m (φ) T s (θ)g(θ)cos(θ),θFOV 0,θ>FOV
P LOS ={ P t (m+1)A h m+1 d 0 m+3 T s (θ)g(θ),θFOV 0,θ>FOV
P electrical = (R P LOS ) 2
P electrical = (R P t (m+1)A T s (θ)g(θ) h m+1 ) 2 2 d 0 2m+6
d 0 = (R P t (m+1)A T s (θ)g(θ) h m+1 ) 2 2 P electrical 2m+6
( x R - x 1 ) 2 + ( y R - y 1 ) 2 + ( z R - z 1 ) 2 = d 01 2 ( x R - x 2 ) 2 + ( y R - y 2 ) 2 + ( z R - z 2 ) 2 = d 02 2 ( x R - x 3 ) 2 + ( y R - y 3 ) 2 + ( z R - z 3 ) 2 = d 03 2
AX=B A=[ x 2 x 1 y 2 y 1 x 3 x 1 y 3 y 1 ],X=[ x R y R ] andB=[ ( d 01 2 d 02 2 + x 2 2 + y 2 2 x 1 2 y 1 2 )/2 ( d 01 2 d 03 2 + x 3 2 + y 3 2 x 1 2 y 1 2 )/2 ]
P diffuse ={ k=0 N ref S ( L 1 L 2 ... L k+1 ) Γ (k) dA, θ k+1 FOV 0, θ k+1 >FOV },k1
N= σ thermal 2 + σ shot 2 + R 2 P RISI 2
SNR= R 2 P r 2 σ shot 2 + σ thermal 2 + R 2 P RISI 2
FOV cos -1 ( h r Si - r R );i=1,2,3

Metrics