Abstract

We developed an optical model for simulation and optimization of luminescent down-shifting (LDS) layers for photovoltaics. These layers consist of micron-sized phosphor particles embedded in a polymer binder. The model is based on ray tracing and employs an effective approach to scattering and photoluminescence modelling. Experimental verification of the model shows that the model accurately takes all the structural parameters and material properties of the LDS layers into account, including the layer thickness, phosphor particle volume concentration, and phosphor particle size distribution. Finally, using the verified model, complete organic solar cells on glass substrate covered with the LDS layers are simulated. Simulations reveal that an optimized LDS layer can result in more than 6% larger short-circuit current of the solar cell.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly transmissive luminescent down-shifting layers filled with phosphor particles for photovoltaics

Anastasiia Solodovnyk, Karen Forberich, Edda Stern, Janez Krč, Marko Topič, Miroslaw Batentschuk, Benjamin Lipovšek, and Christoph J. Brabec
Opt. Mater. Express 5(6) 1296-1305 (2015)

The use of the adding-doubling method for the optical optimization of planar luminescent down shifting layers for solar cells

Sven Leyre, Jan Cappelle, Guy Durinck, Aimi Abass, Johan Hofkens, Geert Deconinck, and Peter Hanselaer
Opt. Express 22(S3) A765-A778 (2014)

Detailed optical modelling and light-management of thin-film organic solar cells with consideration of small-area effects

Benjamin Lipovšek, Andrej Čampa, Fei Guo, Christoph J. Brabec, Karen Forberich, Janez Krč, and Marko Topič
Opt. Express 25(4) A176-A190 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494 (1980).
    [Crossref]
  2. M. Topič, R. M. Geisthardt, and J. R. Sites, “Performance limits and status of single-junction solar cells with emphasis on CIGS,” IEEE J. Photovoltaics 5(1), 360–365 (2015).
    [Crossref]
  3. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
    [Crossref]
  4. A. Martí and G. L. Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
    [Crossref]
  5. D. Fischer, S. Dubail, J. A. A. Selvan, N. P. Vaucher, R. Platz, C. Hof, U. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, and K.-D. Ufert, “The ‘micromorph’ solar cell: extending a-Si:H technology towards thin film crystalline silicon,” in Conference Record of the 25th IEEE Photovoltaic Specialists Conference (IEEE 1996), pp. 1053–1056.
  6. W. G. Goetzberger, “Solar energy conversion with fluorescent collectors,” Appl. Phys., A Mater. Sci. Process. 14(2), 123–139 (1977).
  7. H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
    [Crossref]
  8. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
    [Crossref]
  9. E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
    [Crossref]
  10. E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
    [Crossref]
  11. X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
    [Crossref]
  12. S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
    [Crossref]
  13. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
    [Crossref]
  14. A. Solodovnyk, K. Forberich, E. Stern, J. Krč, M. Topič, B. Lipovšek, and C. J. Brabec, “Highly transmissive luminescent down-shifting layers filled with phosphor particles for photovoltaics,” Opt. Mater. Express 5(6), 1296–1305 (2015).
    [Crossref]
  15. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
    [Crossref]
  16. A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells 75(3–4), 363–371 (2003).
    [Crossref]
  17. S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behaviour, predicted using a ray trace approach,” Int. J. Ambient Energy 25(1), 47–56 (2004).
    [Crossref]
  18. B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
    [Crossref]
  19. D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
    [Crossref]
  20. B. Lipovšek, J. Krč, and M. Topič, “Optical model for thin-film photovoltaic devices with large surface textures at the front side,” Informacije MIDEM 41(4), 264–271 (2011).
  21. Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1–2), 159–165 (2004).
    [Crossref]
  22. A. Čampa, “NIKA - model for extracting refractive indices,” in Proceedings of the 48th International Conference on Microelectronics, Devices and Materials (MIDEM, 2012), pp. 81–86.
  23. B. Lipovšek, J. Krč, and M. Topič, “Design and optimisation of thin-film silicon PV modules with surface-textured front glass by using a combined geometric optics / wave optics model,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 2604–2607.
  24. Z. C. Holman, M. Filipič, B. Lipovšek, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors,” Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
    [Crossref]
  25. M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3 perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
    [Crossref] [PubMed]
  26. B. Lipovšek, J. Krč, and M. Topič, “Optimization of microtextured light-management films for enhanced light trapping in organic solar cells under perpendicular and oblique illumination conditions,” IEEE J. Photovoltaics 4(2), 639–646 (2014).
    [Crossref]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

2015 (3)

2014 (4)

B. Lipovšek, J. Krč, and M. Topič, “Optimization of microtextured light-management films for enhanced light trapping in organic solar cells under perpendicular and oblique illumination conditions,” IEEE J. Photovoltaics 4(2), 639–646 (2014).
[Crossref]

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
[Crossref]

Z. C. Holman, M. Filipič, B. Lipovšek, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors,” Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
[Crossref]

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

2012 (1)

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

2011 (3)

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[Crossref]

B. Lipovšek, J. Krč, and M. Topič, “Optical model for thin-film photovoltaic devices with large surface textures at the front side,” Informacije MIDEM 41(4), 264–271 (2011).

2010 (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

2009 (1)

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

2007 (1)

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[Crossref]

2006 (1)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

2004 (2)

S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behaviour, predicted using a ray trace approach,” Int. J. Ambient Energy 25(1), 47–56 (2004).
[Crossref]

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1–2), 159–165 (2004).
[Crossref]

2003 (1)

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells 75(3–4), 363–371 (2003).
[Crossref]

2002 (1)

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[Crossref]

1996 (1)

A. Martí and G. L. Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[Crossref]

1980 (1)

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494 (1980).
[Crossref]

1979 (1)

H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
[Crossref]

1977 (1)

W. G. Goetzberger, “Solar energy conversion with fluorescent collectors,” Appl. Phys., A Mater. Sci. Process. 14(2), 123–139 (1977).

Alonso-Álvarez, D.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
[Crossref]

Araújo, G. L.

A. Martí and G. L. Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[Crossref]

Ballif, C.

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3 perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

Z. C. Holman, M. Filipič, B. Lipovšek, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors,” Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
[Crossref]

Barnham, K. W. J.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells 75(3–4), 363–371 (2003).
[Crossref]

Brabec, C. J.

Buxton, B. F.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells 75(3–4), 363–371 (2003).
[Crossref]

Chatten, A. J.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells 75(3–4), 363–371 (2003).
[Crossref]

De Wolf, S.

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3 perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

Z. C. Holman, M. Filipič, B. Lipovšek, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors,” Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
[Crossref]

Eames, P. C.

S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behaviour, predicted using a ray trace approach,” Int. J. Ambient Energy 25(1), 47–56 (2004).
[Crossref]

Ekins-Daukes, N. J.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells 75(3–4), 363–371 (2003).
[Crossref]

Fan, Z.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Filipic, M.

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3 perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

Z. C. Holman, M. Filipič, B. Lipovšek, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors,” Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
[Crossref]

Forberich, K.

Fu, H.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Gallagher, S. J.

S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behaviour, predicted using a ray trace approach,” Int. J. Ambient Energy 25(1), 47–56 (2004).
[Crossref]

Geisthardt, R. M.

M. Topič, R. M. Geisthardt, and J. R. Sites, “Performance limits and status of single-junction solar cells with emphasis on CIGS,” IEEE J. Photovoltaics 5(1), 360–365 (2015).
[Crossref]

Goetzberger, W. G.

W. G. Goetzberger, “Solar energy conversion with fluorescent collectors,” Appl. Phys., A Mater. Sci. Process. 14(2), 123–139 (1977).

Green, M. A.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[Crossref]

Gupta, S.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Henry, C. H.

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494 (1980).
[Crossref]

Hodgson, R. T.

H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
[Crossref]

Holman, Z. C.

Z. C. Holman, M. Filipič, B. Lipovšek, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors,” Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
[Crossref]

Hovel, H. J.

H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
[Crossref]

Huang, X. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Ishizawa, N.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1–2), 159–165 (2004).
[Crossref]

Jia, S.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
[Crossref]

Kalytchuk, S.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Kershaw, S. V.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Klampaftis, E.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
[Crossref]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Krc, J.

A. Solodovnyk, K. Forberich, E. Stern, J. Krč, M. Topič, B. Lipovšek, and C. J. Brabec, “Highly transmissive luminescent down-shifting layers filled with phosphor particles for photovoltaics,” Opt. Mater. Express 5(6), 1296–1305 (2015).
[Crossref]

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3 perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

B. Lipovšek, J. Krč, and M. Topič, “Optimization of microtextured light-management films for enhanced light trapping in organic solar cells under perpendicular and oblique illumination conditions,” IEEE J. Photovoltaics 4(2), 639–646 (2014).
[Crossref]

B. Lipovšek, J. Krč, and M. Topič, “Optical model for thin-film photovoltaic devices with large surface textures at the front side,” Informacije MIDEM 41(4), 264–271 (2011).

B. Lipovšek, J. Krč, and M. Topič, “Design and optimisation of thin-film silicon PV modules with surface-textured front glass by using a combined geometric optics / wave optics model,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 2604–2607.

Kuwano, Y.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1–2), 159–165 (2004).
[Crossref]

Kwok, E. C. H.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Li, D.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

Li, Q.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

Lipovšek, B.

A. Solodovnyk, K. Forberich, E. Stern, J. Krč, M. Topič, B. Lipovšek, and C. J. Brabec, “Highly transmissive luminescent down-shifting layers filled with phosphor particles for photovoltaics,” Opt. Mater. Express 5(6), 1296–1305 (2015).
[Crossref]

Z. C. Holman, M. Filipič, B. Lipovšek, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors,” Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
[Crossref]

B. Lipovšek, J. Krč, and M. Topič, “Optimization of microtextured light-management films for enhanced light trapping in organic solar cells under perpendicular and oblique illumination conditions,” IEEE J. Photovoltaics 4(2), 639–646 (2014).
[Crossref]

B. Lipovšek, J. Krč, and M. Topič, “Optical model for thin-film photovoltaic devices with large surface textures at the front side,” Informacije MIDEM 41(4), 264–271 (2011).

B. Lipovšek, J. Krč, and M. Topič, “Design and optimisation of thin-film silicon PV modules with surface-textured front glass by using a combined geometric optics / wave optics model,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 2604–2607.

Löper, P.

Malik, M. A.

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells 75(3–4), 363–371 (2003).
[Crossref]

Martí, A.

A. Martí and G. L. Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[Crossref]

McIntosh, K. R.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[Crossref]

Niesen, B.

Norton, B.

S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behaviour, predicted using a ray trace approach,” Int. J. Ambient Energy 25(1), 47–56 (2004).
[Crossref]

Pi, X.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

Richards, B. S.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
[Crossref]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[Crossref]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Rogach, A. L.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Ross, D.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
[Crossref]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Seyrling, S.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

Sites, J. R.

M. Topič, R. M. Geisthardt, and J. R. Sites, “Performance limits and status of single-junction solar cells with emphasis on CIGS,” IEEE J. Photovoltaics 5(1), 360–365 (2015).
[Crossref]

Smole, F.

Z. C. Holman, M. Filipič, B. Lipovšek, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors,” Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
[Crossref]

Solodovnyk, A.

Stern, E.

Stolz, T.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
[Crossref]

Storiz, P.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
[Crossref]

Suda, K.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1–2), 159–165 (2004).
[Crossref]

Teoh, W. Y.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Tiwari, A. N.

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

Topic, M.

M. Topič, R. M. Geisthardt, and J. R. Sites, “Performance limits and status of single-junction solar cells with emphasis on CIGS,” IEEE J. Photovoltaics 5(1), 360–365 (2015).
[Crossref]

A. Solodovnyk, K. Forberich, E. Stern, J. Krč, M. Topič, B. Lipovšek, and C. J. Brabec, “Highly transmissive luminescent down-shifting layers filled with phosphor particles for photovoltaics,” Opt. Mater. Express 5(6), 1296–1305 (2015).
[Crossref]

M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, and M. Topič, “CH3NH3PbI3 perovskite / silicon tandem solar cells: characterization based optical simulations,” Opt. Express 23(7), A263–A278 (2015).
[Crossref] [PubMed]

Z. C. Holman, M. Filipič, B. Lipovšek, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors,” Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
[Crossref]

B. Lipovšek, J. Krč, and M. Topič, “Optimization of microtextured light-management films for enhanced light trapping in organic solar cells under perpendicular and oblique illumination conditions,” IEEE J. Photovoltaics 4(2), 639–646 (2014).
[Crossref]

B. Lipovšek, J. Krč, and M. Topič, “Optical model for thin-film photovoltaic devices with large surface textures at the front side,” Informacije MIDEM 41(4), 264–271 (2011).

B. Lipovšek, J. Krč, and M. Topič, “Design and optimisation of thin-film silicon PV modules with surface-textured front glass by using a combined geometric optics / wave optics model,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 2604–2607.

Trupke, T.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[Crossref]

Vaneski, A.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Wang, C.-F.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Woodall, J. M.

H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
[Crossref]

Würfel, P.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[Crossref]

Yamada, T.

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1–2), 159–165 (2004).
[Crossref]

Yang, D.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

Zhang, Q. Y.

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Zhovtiuk, O.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

W. G. Goetzberger, “Solar energy conversion with fluorescent collectors,” Appl. Phys., A Mater. Sci. Process. 14(2), 123–139 (1977).

IEEE J. Photovoltaics (2)

M. Topič, R. M. Geisthardt, and J. R. Sites, “Performance limits and status of single-junction solar cells with emphasis on CIGS,” IEEE J. Photovoltaics 5(1), 360–365 (2015).
[Crossref]

B. Lipovšek, J. Krč, and M. Topič, “Optimization of microtextured light-management films for enhanced light trapping in organic solar cells under perpendicular and oblique illumination conditions,” IEEE J. Photovoltaics 4(2), 639–646 (2014).
[Crossref]

Informacije MIDEM (1)

B. Lipovšek, J. Krč, and M. Topič, “Optical model for thin-film photovoltaic devices with large surface textures at the front side,” Informacije MIDEM 41(4), 264–271 (2011).

Int. J. Ambient Energy (1)

S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behaviour, predicted using a ray trace approach,” Int. J. Ambient Energy 25(1), 47–56 (2004).
[Crossref]

J. Appl. Phys. (2)

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys. 51(8), 4494 (1980).
[Crossref]

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[Crossref]

J. Cryst. Growth (1)

Y. Kuwano, K. Suda, N. Ishizawa, and T. Yamada, “Crystal growth and properties of (Lu,Y)3Al5O12,” J. Cryst. Growth 260(1–2), 159–165 (2004).
[Crossref]

J. Phys. Chem. C (1)

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C.-F. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Prog. Mater. Sci. (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353–427 (2010).
[Crossref]

Prog. Photovolt. Res. Appl. (3)

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011).
[Crossref]

B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray-tracing simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007).
[Crossref]

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. McIntosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2014).
[Crossref]

Sol. Energy Mater. (1)

H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979).
[Crossref]

Sol. Energy Mater. Sol. Cells (7)

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012).
[Crossref]

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[Crossref]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

A. Martí and G. L. Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[Crossref]

A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells 75(3–4), 363–371 (2003).
[Crossref]

Z. C. Holman, M. Filipič, B. Lipovšek, S. De Wolf, F. Smole, M. Topič, and C. Ballif, “Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors,” Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
[Crossref]

Other (4)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

A. Čampa, “NIKA - model for extracting refractive indices,” in Proceedings of the 48th International Conference on Microelectronics, Devices and Materials (MIDEM, 2012), pp. 81–86.

B. Lipovšek, J. Krč, and M. Topič, “Design and optimisation of thin-film silicon PV modules with surface-textured front glass by using a combined geometric optics / wave optics model,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 2604–2607.

D. Fischer, S. Dubail, J. A. A. Selvan, N. P. Vaucher, R. Platz, C. Hof, U. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, and K.-D. Ufert, “The ‘micromorph’ solar cell: extending a-Si:H technology towards thin film crystalline silicon,” in Conference Record of the 25th IEEE Photovoltaic Specialists Conference (IEEE 1996), pp. 1053–1056.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Dispersion curves of the real (a) and imaginary (b) parts of complex refractive indices of the materials employed in the fabrication of LDS layers. The n values of GAL are taken from [21], all other n & k values determined from measurements. In Fig. 1(b), normalized photoluminescence emission curve of GAL phosphor is also shown [14].
Fig. 2
Fig. 2 (a) Schematic representation of volumetric scattering taking place inside the LDS layer (ray tracing of a single ray is shown). (b) In the case of photoluminescence, additional emission rays are generated during each scattering/PL event experienced by the (excitation) ray (ray tracing and continuous scattering of a single emission ray is shown in a greater detail).
Fig. 3
Fig. 3 (a) Qext as a function of the particle diameter (full gray line) at λ = 600 nm. Also shown are different particle size distributions (dashed colored lines; right axis) and the corresponding averaged Qext values (full colored lines). (b) Qext as a function of the wavelength. Full gray line shows the values as calculated for a fixed particle diameter of 15 μm (mean value of the Normal PSD). Dashed colored lines show the averaged Qext values obtained for each of the three particle size distributions.
Fig. 4
Fig. 4 AIDint for light scattering at a single GAL particle calculated at λ = 600 nm for the cases: (a) LIM binder, non-averaged (fixed dp) and averaged results according to the Normal particle size distribution, (b) LIM binder, averaged results according to different particle size distributions, and (c) different binders, averaged results according to the Normal particle size distribution. The values of the near-specular part are out of range in the figures.
Fig. 5
Fig. 5 Measured (symbols) and simulated (full lines) total transmittance of LDS layers comprised of GAL particles embedded in (a) LIM (n = 1.45) binder and (b) HIM (n = 1.61) binder. Measurement results in the short-wavelength range are shown for the most transparent samples. In Fig. 5(a), simulation results with PL emission light are included for the most transparent sample, and the calibration point where ksca was determined is also indicated.
Fig. 6
Fig. 6 Simulated absorptance in the P3HT:PCBM active layer of the organic solar cell with and without the LDS layer located at the front side (GAL particles, Large PSD, LIM binder, d of 100 μm, PVC of 10%).

Tables (1)

Tables Icon

Table 1 Simulated Jsc values and gains for different device structures. Properties of the LDS layer: GAL particles, Large PSD, PVC of 10%.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P abs =( Q abs / Q ext ) P in
P sca =( Q sca / Q ext ) P in
k 1 = 1 C ext = 1 Q ext ( π d p 2 4 ) = 4 π 1 Q ext d p 2
k 2 = V N p = V VPVC ( π d p 3 6 ) = π 6 d p 3 PVC
L sca = k 1 k 2 k 3 = d p Q ext PVC 2 3 k 3 = d p Q ext PVC k sca
ϕ em ( λ exc )=PLQY( λ exc ) ϕ abs ( λ exc )=PLQY( λ exc ) P abs ( λ exc ) λ exc h c 0
ϕ em ( λ exc , λ em )= ϕ em ( λ exc ) S PL ( λ em ) λ em i S PL ( λ em i ) λ em i = =PLQY( λ exc ) P abs ( λ exc ) λ exc h c 0 S PL ( λ em ) λ em i S PL ( λ em i ) λ em i
P em ( λ exc , λ em )= ϕ em ( λ exc , λ em ) h c 0 λ em = =PLQY( λ exc ) P abs ( λ exc ) λ exc λ em S PL ( λ em ) λ em i S PL ( λ em i ) λ em i

Metrics