Abstract

We report the characteristics of high Q factor chalcogenide ring resonators designed for sensing in the mid-infrared (MIR). The resonators consisted of an exposed Ge11.5As24Se64.5core on a Ge11.5As24S64.5 bottom cladding and were fabricated in the racetrack coupled ring structure. Loaded Q factors at 5.2μm up to 58,000were obtained, corresponding to an intrinsic Q of 145,000 and a waveguide propagation loss of 0.84dB/cm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared

Pan Ma, Duk-Yong Choi, Yi Yu, Xin Gai, Zhiyong Yang, Sukanta Debbarma, Steve Madden, and Barry Luther-Davies
Opt. Express 21(24) 29927-29937 (2013)

High quality chalcogenide-silica hybrid wedge resonator

Gumin Kang, Molly R. Krogstad, Michael Grayson, Dae-Gon Kim, Hansuek Lee, Juliet T. Gopinath, and Wounjhang Park
Opt. Express 25(13) 15581-15589 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
    [Crossref]
  2. M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
    [Crossref] [PubMed]
  3. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
    [Crossref] [PubMed]
  4. A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
    [Crossref]
  5. J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem. 173, 468–476 (2012).
    [Crossref]
  6. J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
    [Crossref]
  7. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  8. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  9. D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
    [Crossref]
  10. J. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [Crossref]
  11. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
    [Crossref] [PubMed]
  12. A. Nitkowski, A. Baeumner, and M. Lipson, “On-chip spectrophotometry for bioanalysis using microring resonators,” Biomed. Opt. Express 2(2), 271–277 (2011).
    [Crossref] [PubMed]
  13. K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
    [Crossref]
  14. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
    [Crossref] [PubMed]
  15. H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
    [Crossref] [PubMed]
  16. V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
    [Crossref]
  17. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
    [Crossref] [PubMed]
  18. P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
    [Crossref] [PubMed]
  19. C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
    [Crossref] [PubMed]
  20. C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
    [Crossref] [PubMed]
  21. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
    [Crossref]
  22. R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
    [Crossref]
  23. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing,” ACS Nano 8(7), 6955–6961 (2014).
    [Crossref] [PubMed]
  24. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 µm,” Opt. Lett. 34(9), 1330–1332 (2009).
    [Crossref] [PubMed]
  25. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref] [PubMed]
  26. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
    [Crossref] [PubMed]
  27. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators,” 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
    [Crossref]
  28. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref] [PubMed]
  29. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
    [Crossref] [PubMed]
  30. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett. 37(5), 875–877 (2012).
    [Crossref] [PubMed]
  31. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19(15), 14233–14239 (2011).
    [Crossref] [PubMed]
  32. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
    [Crossref] [PubMed]
  33. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys. Adv. Mater. 96, 615–625 (2009).
  34. G. Gupta, Y. H. Kuo, H. Tazawa, W. H. Steier, A. Stapleton, and J. D. O’Brien, “Analysis and demonstration of coupling control in polymer microring resonators using photobleaching,” Appl. Opt. 48(28), 5324–5336 (2009).
    [Crossref] [PubMed]
  35. W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics J. 3(3), 422–432 (2011).
    [Crossref]
  36. M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
    [Crossref]
  37. P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
    [Crossref] [PubMed]
  38. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
    [Crossref] [PubMed]
  39. P. J. Astellburt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon RF plasmas,” Plasma Chem. Plasma Process. 6(4), 417–427 (1986).
    [Crossref]
  40. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [Crossref] [PubMed]
  41. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [Crossref]

2014 (3)

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

2013 (7)

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref] [PubMed]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref] [PubMed]

2012 (4)

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett. 37(5), 875–877 (2012).
[Crossref] [PubMed]

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem. 173, 468–476 (2012).
[Crossref]

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

2011 (6)

J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics J. 3(3), 422–432 (2011).
[Crossref]

A. Nitkowski, A. Baeumner, and M. Lipson, “On-chip spectrophotometry for bioanalysis using microring resonators,” Biomed. Opt. Express 2(2), 271–277 (2011).
[Crossref] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19(15), 14233–14239 (2011).
[Crossref] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398–3400 (2011).
[Crossref] [PubMed]

2010 (4)

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

2009 (6)

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

J. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[Crossref]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 µm,” Opt. Lett. 34(9), 1330–1332 (2009).
[Crossref] [PubMed]

G. Gupta, Y. H. Kuo, H. Tazawa, W. H. Steier, A. Stapleton, and J. D. O’Brien, “Analysis and demonstration of coupling control in polymer microring resonators using photobleaching,” Appl. Opt. 48(28), 5324–5336 (2009).
[Crossref] [PubMed]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys. Adv. Mater. 96, 615–625 (2009).

2008 (3)

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

2007 (3)

2004 (1)

2002 (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

1986 (1)

P. J. Astellburt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon RF plasmas,” Plasma Chem. Plasma Process. 6(4), 417–427 (1986).
[Crossref]

Adler, F.

Agarwal, A.

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

J. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref] [PubMed]

Agarwal, A. M.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

Aggarwal, I. D.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Anderson, T.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

Anne, M. L.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Astellburt, P. J.

P. J. Astellburt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon RF plasmas,” Plasma Chem. Plasma Process. 6(4), 417–427 (1986).
[Crossref]

Baehr-Jones, T.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Baeumner, A.

Bañuls Polo, M. J.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Barrios, C. A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

Bienstman, P.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Bogaerts, W.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics J. 3(3), 422–432 (2011).
[Crossref]

Boussard-Pledel, C.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Brandily, M. L.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem. 173, 468–476 (2012).
[Crossref]

Bulla, D. A.

Bulla, D. A. P.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys. Adv. Mater. 96, 615–625 (2009).

Bulu, I.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Bureau, B.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem. 173, 468–476 (2012).
[Crossref]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Cairns, J. A.

P. J. Astellburt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon RF plasmas,” Plasma Chem. Plasma Process. 6(4), 417–427 (1986).
[Crossref]

Canciamilla, A.

Cardenas, J.

Carlborg, C. F.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Carlie, N.

J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref] [PubMed]

Carmon, T.

Castrillo, A.

D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
[Crossref]

Charrier, J.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem. 173, 468–476 (2012).
[Crossref]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Cheetham, A. K.

P. J. Astellburt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon RF plasmas,” Plasma Chem. Plasma Process. 6(4), 417–427 (1986).
[Crossref]

Chen, L.

Chen, Y.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Choi, D. Y.

Colas, F.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Compère, C.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Cossel, K. C.

Danto, S.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref] [PubMed]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

Debbarma, S.

Del’Haye, P.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators,” 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
[Crossref]

Deng, F.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref] [PubMed]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Dortu, F.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Dumon, P.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Eggleton, B. J.

Faist, J.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Fermann, M. E.

Fiers, M.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Gai, X.

Galzerano, G.

D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
[Crossref]

Gambetta, A.

D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
[Crossref]

Ganjoo, A.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

Gatti, D.

D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
[Crossref]

Giammarco, J.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

Gianfrani, L.

D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
[Crossref]

Gupta, G.

Gylfason, K. B.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators,” 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
[Crossref]

Hänsch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Hartl, I.

Hazel, R. M.

P. J. Astellburt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon RF plasmas,” Plasma Chem. Plasma Process. 6(4), 417–427 (1986).
[Crossref]

Herr, T.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators,” 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
[Crossref]

Hochberg, M.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Holzwarth, R.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators,” 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
[Crossref]

Hu, J.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref] [PubMed]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref] [PubMed]

Hu, J. J.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
[Crossref]

J. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[Crossref]

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Hyodo, K.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Ilic, R.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Inoue, S.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Irudayaraj, J.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

Jain, H.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

Johnson, A. R.

Kazmierczak, A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Keirsse, J.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Kimerling, L.

J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref] [PubMed]

Kimerling, L. C.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

J. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[Crossref]

Kippenberg, T. J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators,” 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
[Crossref]

Kozacik, S.

Kresbach, G. M.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Kuo, Y. H.

Kuzucu, O.

Kwok, S. W.

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Lambert, E.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Laporta, P.

D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
[Crossref]

Le Person, J.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Levy, J. S.

Lhermite, H.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem. 173, 468–476 (2012).
[Crossref]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Li, L.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref] [PubMed]

Li, M.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Lin, H.

Lin, H. T.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

Lin, H. Y. G.

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

Lin, P. T.

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

Lipson, M.

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Liu, Y.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Loncar, M.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Loreal, O.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Luther-Davies, B.

Luzinov, I.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

Ma, P.

Madden, S.

Madden, S. J.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys. Adv. Mater. 96, 615–625 (2009).

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Maes, B.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Maquieira Catala, A.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Marangoni, M.

D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
[Crossref]

Melloni, A.

Michel, K.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem. 173, 468–476 (2012).
[Crossref]

Moh, T.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Morichetti, F.

Murakowski, M.

Musgraves, J. D.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref] [PubMed]

J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

Nazabal, V.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem. 173, 468–476 (2012).
[Crossref]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Ni, C.

Ni, C. Y.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

Nitkowski, A.

Novak, J.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

Novak, S.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

O’Brien, J. D.

Okawachi, Y.

Pantano, C. G.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

Patel, N.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

Pathak, S.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Pelusi, M. D.

Petit, L.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref] [PubMed]

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators,” 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
[Crossref]

Picqué, N.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Popplewell, J.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Prasad, A.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys. Adv. Mater. 96, 615–625 (2009).

Prather, D.

Richardson, K.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref] [PubMed]

J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref] [PubMed]

Richardson, M.

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

Robinson, J. T.

Rode, A. V.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys. Adv. Mater. 96, 615–625 (2009).

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Ronan, G.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Saha, K.

Sala, T.

D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
[Crossref]

Sanghera, J. S.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators,” 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
[Crossref]

Selvaraja, S. K.

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics J. 3(3), 422–432 (2011).
[Crossref]

Shankar, R.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Singh, V.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

Sohlström, H.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Soliani, A. P.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

Spott, A.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

Stapleton, A.

Steier, W. H.

Stemme, G.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Sun, X. C.

Ta’eed, V. G.

Tarasov, V.

Tazawa, H.

Thorpe, M. J.

Vahala, K.

van der Wijngaart, W.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Verger, F.

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem. 173, 468–476 (2012).
[Crossref]

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Vivien, L.

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Wachtel, P.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators,” 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
[Crossref]

Wang, R. P.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys. Adv. Mater. 96, 615–625 (2009).

Wen, Y. H.

Whitesides, G. M.

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Yanakata, K.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

Yang, L.

Yang, Z.

Ye, J.

Yu, C.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

Yu, Y.

Zdyrko, B.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
[Crossref]

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

Zou, Y.

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref] [PubMed]

ACS Nano (1)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Adv. Mater. (1)

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys. Adv. Mater. 96, 615–625 (2009).

Appl. Phys. Lett. (2)

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5μm,” Appl. Phys. Lett. 97(21), 213501 (2010).
[Crossref]

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett. 102(5), 051108 (2013).
[Crossref]

Biomed. Opt. Express (1)

C. R. Chim. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

IEEE Photonics J. (1)

W. Bogaerts and S. K. Selvaraja, “Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends,” IEEE Photonics J. 3(3), 422–432 (2011).
[Crossref]

J. Comput. Sci. (1)

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids 354(19-25), 2757–2762 (2008).
[Crossref]

J. Nonlinear Opt. Phys. (1)

K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. 19(01), 75–99 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010).
[Crossref] [PubMed]

Nano Lett. (1)

P. T. Lin, S. W. Kwok, H. Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing,” Nano Lett. 14(1), 231–238 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Nature (2)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref] [PubMed]

Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII (1)

D. Gatti, A. Castrillo, A. Gambetta, T. Sala, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Precision mid-infrared frequency combs and spectroscopic applications,” Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII 8604, 86040O (2013).
[Crossref]

Opt. Express (7)

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[Crossref] [PubMed]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007).
[Crossref] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19(15), 14233–14239 (2011).
[Crossref] [PubMed]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Phys. Rev. Lett. (1)

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Plasma Chem. Plasma Process. (1)

P. J. Astellburt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon RF plasmas,” Plasma Chem. Plasma Process. 6(4), 417–427 (1986).
[Crossref]

Quantum Sensing and Nanophotonic Devices VIII (1)

J. J. Hu, J. D. Musgraves, N. Carlie, B. Zdyrko, I. Luzinov, A. Agarwal, K. Richardson, and L. Kimerling, “Development of chipscale chalcogenide glass based infrared chemical sensors,” Quantum Sensing and Nanophotonic Devices VIII 7945, 79452C (2011).
[Crossref]

Sci. Technol. Adv. Mater. (1)

V. Singh, P. T. Lin, N. Patel, H. T. Lin, L. Li, Y. Zou, F. Deng, C. Y. Ni, J. J. Hu, J. Giammarco, A. P. Soliani, B. Zdyrko, I. Luzinov, S. Novak, J. Novak, P. Wachtel, S. Danto, J. D. Musgraves, K. Richardson, L. C. Kimerling, and A. M. Agarwal, “Mid-infrared materials and devices on a Si platform for optical sensing,” Sci. Technol. Adv. Mater. 15(1), 014603 (2014).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem. 173, 468–476 (2012).
[Crossref]

Sensors (Basel) (2)

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors (Basel) 9(9), 7398–7411 (2009).
[Crossref] [PubMed]

C. A. Barrios, “Optical slot-waveguide based biochemical sensors,” Sensors (Basel) 9(6), 4751–4765 (2009).
[Crossref] [PubMed]

Other (1)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Generation of Low Phase-noise Mid-Infrared Optical Frequency Combs from Crystalline Microresonators,” 2012 Conference on Lasers and Electro-Optics (Cleo) (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Mode profile of Ge11.5As24Se64.5 waveguide at 5.2µm; (b) Bend loss and junction loss as a function of bend radius.
Fig. 2
Fig. 2 Radiation loss to silicon substrate and absorption loss of waveguide on silica for variable Ge11.5As24S64.5 underclad thickness.
Fig. 3
Fig. 3 Coupler gap vs. coupling length of standard, pulley and racetrack coupled ring structure for critical coupling. Loss is assumed 1dB/cm.
Fig. 4
Fig. 4 (a) Reflection and transmission vs. fluoropolymer thickness at 5.1µm; (b). Reflection of waveguide end facet with fluoropolymer coating 950nm thick as a function of wavelength.
Fig. 5
Fig. 5 (a) Optical microscope top-view image of a 180 µm radius MIR resonator; (b) Cross section image of the waveguide.
Fig. 6
Fig. 6 Schematic of MIR measurement apparatus.
Fig. 7
Fig. 7 Transmission spectra of reference waveguides with and without 950nm fluoropolymer AR coating (not normalized for QCL power variations).
Fig. 8
Fig. 8 (a) MIR optical transmission spectrum of the racetrack resonator measured with QCL sweep mode; (b) Spectrum near the optical resonance at 5193.3nm.
Fig. 9
Fig. 9 Insertion loss data and linear least square fitting estimate of propagation loss for three separate chips with straight waveguides at 5.2μm.

Metrics