Abstract

We propose a cost-effective coherent passive optical network (PON) by employing the linear silicon Mach-Zehnder modulator (MZM) with computationally-efficient digital signal processing (DSP). The proposed PON adopts the intensity modulation and coherent detection scheme with discrete multi-tone (DMT) signal to achieve both high spectral efficiency (SE) and receiver sensitivity. Meanwhile, a digital carrier regeneration (DCR) method is proposed to further reduce the optical carrier-to-signal power ratio of intensity modulated DMT signal based on silicon MZM, which will significantly increase the achievable system power budget, especially when a high-order modulation format is adopted. No carrier frequency offset and phase estimations are needed in the receiver, which greatly reduces the complexity for both laser and DSP in coherent detection. Finally, a 10-Gb/s/ch uplink transmission is experimentally demonstrated using the proposed DCR method over 20-km standard single-mode fiber (SSMF), achieving about −44dBm sensitivity under the 7% forward-error-correction (FEC) limit of bit error ratio (BER) = 3.8x10−3.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
4 × 128-Gb/s PDM-DMT signal transmission over 1440-km SSMF with high phase noise tolerance

Cai Li, Ming Luo, and Xiang Li
Opt. Express 26(23) 30901-30910 (2018)

Cost-effective coherent ONU transceiver based on single directly modulated laser

Ming Luo, Rong Hu, Wei Li, Qi Yang, and Shaohua Yu
Opt. Express 24(12) 12879-12885 (2016)

Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection

Ze Dong, Jianjun Yu, Hung-Chang Chien, Nan Chi, Lin Chen, and Gee-Kung Chang
Opt. Express 19(12) 11100-11105 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol. 30(4), 597–608 (2012).
    [Crossref]
  2. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [Crossref]
  3. S. J. Savory, “Digital coherent optical access networks,” in Proc. ICP’13, paper. MG2.1 (2013).
  4. N. Cvijetic, M. F. Huang, E. Ip, Y. Shao, Y. K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1:64 passive split,” Opt. Express 19(24), 24540–24545 (2011).
    [Crossref] [PubMed]
  5. A. Shahpari, J. D. Reis, R. Ferreira, D. M. Neves, M. J. Lima, and A. L. Teixeira, “Terabit+ (192 x 10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band,” in Proc. OFC’13, paper. PDP5B.3 (2013).
  6. E. Ip, A. P. T. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  7. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  8. X. Liu, B. Fred, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
    [Crossref]
  9. M. Presi, R. Corsini, and E. Ciaramella, “Experimental demonstration of a novel polarization -independent coherent receiver for PONs,” in Proc. OFC’14, paper. W4G.3 (2014).
    [Crossref]
  10. R. Hu, Q. Yang, M. Luo, X. Xiao, X. Xiao, H. Li, and W. Shieh, “A cost-effective 2.5 Gb/s/λ bi-directional coherent UDWDM-PON with computationally-efficient DSP,” in Proc. ECOC’14, paper. Th.2.6.4 (2014).
    [Crossref]
  11. M. Presi, R. Corsini, M. Artiglia, F. Bottoni, G. Cossu, and E. Ciaramella, “Low-cost 6.25 GHz UDWDM-PON based on direct intensity-modulated transmitters,” in Proc. OFC’15, paper. Th3I.1 (2015).
    [Crossref]
  12. C. Xie, S. Spiga, P. Dong, P. J. Winzer, A. Gnauck, C. Gréus, C. Neumeyr, M. Ortsiefer, M. Müller, and M. Amann, “Generation and transmission of 100-Gb/s PDM 4-PAM using directly modulated VCSELs and coherent detection,” in Proc. OFC’14, paper. Th3K.2 (2014).
    [Crossref]
  13. J. B. Jensen, R. Rodes, N. Cheng, and I. T. Monroy, “VCSELs for coherent PON,” in Proc. OFC’15, paper. Th3I.6 (2015).
  14. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21(4), 4116–4125 (2013).
    [Crossref] [PubMed]
  15. L. Chen, C. R. Doerr, P. Dong, and Y. K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express 19(26), B946–B951 (2011).
    [Crossref] [PubMed]
  16. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “Pre-emphasis and RF-pilot tone phase noise compensation for coherent OFDM transmission systems,” in Proc. IEEE/LEOS Summer Topical Meetings, paper. MA1.2 (2007).
    [Crossref]
  17. S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photonics Technol. Lett. 22(17), 1288–1290 (2010).
    [Crossref]
  18. X. Zhou, X. L. Yang, R. Li, and K. P. Long, “Efficient joint carrier frequency offset and phase noise compensation scheme for high-speed coherent optical OFDM systems,” J. Lightwave Technol. 31(11), 1755–1761 (2013).

2013 (2)

2012 (2)

2011 (2)

2010 (1)

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photonics Technol. Lett. 22(17), 1288–1290 (2010).
[Crossref]

2009 (1)

2008 (2)

Adhikari, S.

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photonics Technol. Lett. 22(17), 1288–1290 (2010).
[Crossref]

Bao, H.

Barros, D. J.

Chen, L.

Chen, Y. K.

Chu, T.

Cvijetic, M.

Cvijetic, N.

Doerr, C. R.

Dong, P.

Fred, B.

Huang, M. F.

Huang, Y. K.

Ip, E.

Jansen, S. L.

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photonics Technol. Lett. 22(17), 1288–1290 (2010).
[Crossref]

Kahn, J. M.

Lau, A. P. T.

Li, R.

Li, X.

Li, Z.

Liu, X.

Long, K. P.

Randel, S.

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photonics Technol. Lett. 22(17), 1288–1290 (2010).
[Crossref]

Shao, Y.

Shieh, W.

Tang, Y.

Tkach, R. W.

Wang, T.

Wong, E.

Xiao, X.

Xu, H.

Yang, X. L.

Yu, J.

Yu, Y.

Zhou, X.

IEEE Photonics Technol. Lett. (1)

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photonics Technol. Lett. 22(17), 1288–1290 (2010).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (5)

Other (8)

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “Pre-emphasis and RF-pilot tone phase noise compensation for coherent OFDM transmission systems,” in Proc. IEEE/LEOS Summer Topical Meetings, paper. MA1.2 (2007).
[Crossref]

A. Shahpari, J. D. Reis, R. Ferreira, D. M. Neves, M. J. Lima, and A. L. Teixeira, “Terabit+ (192 x 10 Gb/s) Nyquist shaped UDWDM coherent PON with upstream and downstream over a 12.8 nm band,” in Proc. OFC’13, paper. PDP5B.3 (2013).

S. J. Savory, “Digital coherent optical access networks,” in Proc. ICP’13, paper. MG2.1 (2013).

M. Presi, R. Corsini, and E. Ciaramella, “Experimental demonstration of a novel polarization -independent coherent receiver for PONs,” in Proc. OFC’14, paper. W4G.3 (2014).
[Crossref]

R. Hu, Q. Yang, M. Luo, X. Xiao, X. Xiao, H. Li, and W. Shieh, “A cost-effective 2.5 Gb/s/λ bi-directional coherent UDWDM-PON with computationally-efficient DSP,” in Proc. ECOC’14, paper. Th.2.6.4 (2014).
[Crossref]

M. Presi, R. Corsini, M. Artiglia, F. Bottoni, G. Cossu, and E. Ciaramella, “Low-cost 6.25 GHz UDWDM-PON based on direct intensity-modulated transmitters,” in Proc. OFC’15, paper. Th3I.1 (2015).
[Crossref]

C. Xie, S. Spiga, P. Dong, P. J. Winzer, A. Gnauck, C. Gréus, C. Neumeyr, M. Ortsiefer, M. Müller, and M. Amann, “Generation and transmission of 100-Gb/s PDM 4-PAM using directly modulated VCSELs and coherent detection,” in Proc. OFC’14, paper. Th3K.2 (2014).
[Crossref]

J. B. Jensen, R. Rodes, N. Cheng, and I. T. Monroy, “VCSELs for coherent PON,” in Proc. OFC’15, paper. Th3I.6 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Cross-section diagram of the single push-pull reverse biased PN junction phase shifter; (b) effective index (Neff) and characteristic impedance (Zc) results from finite element method simulation.
Fig. 2
Fig. 2 (a) Schematic diagram of the optical DMT signal in proposed scheme; (b) flow chart of the proposed DCR method.
Fig. 3
Fig. 3 (a) Flow chart of the RF-pilot tone based method; (b) comparison between DCR and RF-pilot tone method under different linewidth and CSPR.
Fig. 4
Fig. 4 Experimental setup for the 10-Gb/s/ch transmission over 20-km SSMF using silicon MZM and proposed DCR method. (a) Optical spectrum of the generated carrier suppressed DMT signal, (b) optical spectrum of conventional intensity modulated DMT signal. TOF: tunable optical filter.
Fig. 5
Fig. 5 Receiver sensitivities for both coherent detection and direct detection schemes at back-to-back measurement.
Fig. 6
Fig. 6 Receiver sensitivities for the coherent detection scheme using DCR method over 20-km SSMF.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

c ¯ n =αAexp[ j ω IF n+jΔθ(n) ]
s ¯ n = d n exp[ j ω IF n+jΔθ(n) ]
| s ¯ n + c ¯ n || c ¯ n || αA+ d n || αA | = d n ,when:α1

Metrics