Abstract

We theoretically and experimentally perform a comparative study on performance of the linear standing-wave cavity and ring cavity for external cavity frequency doubling at the wavelength from 795 nm to 397.5 nm. The two cavities show obvious differences of the thermal effect of nonlinear crystal, cavity sensitivity, and maximum output power. The results show that ring cavity as the external enhancement cavity is a better choice than standing-wave cavity at short wavelength region. At last, a 397.5 nm violet laser with 408 mW corresponding to an input power of 992 mW is obtained by using the ring cavity, considering the original mode-matching efficiency of 98% between the 795 nm laser and frequency doubling cavity, the conversion efficiency is 41.9%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of 130  mW of 397.5  nm tunable laser via ring-cavity-enhanced frequency doubling

Yashuai Han, Xin Wen, Jiandong Bai, Baodong Yang, Yanhua Wang, Jun He, and Junmin Wang
J. Opt. Soc. Am. B 31(8) 1942-1947 (2014)

Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime

Xin Wen, Yashuai Han, Jiandong Bai, Jun He, Yanhua Wang, Baodong Yang, and Junmin Wang
Opt. Express 22(26) 32293-32300 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Grangier, R. E. Slusher, B. Yurke, and A. Laporta, “Squeezed-light-enhanced polarization interferometer,” Phys. Rev. Lett. 59(19), 2153–2156 (1987).
    [Crossref] [PubMed]
  2. J. L. Srensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80(16), 3487–3490 (1998).
    [Crossref]
  3. Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
    [Crossref]
  4. G. Hetet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007).
    [Crossref]
  5. T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, “Generation of a squeezed vacuum resonant on a ribidium D1 line with periodicaaly poled KTiOPO4,” Opt. Lett. 31(15), 2344–2346 (2006).
    [Crossref] [PubMed]
  6. A. Predojevic, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78, 063820 (2008).
    [Crossref]
  7. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
    [Crossref] [PubMed]
  8. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
    [Crossref]
  9. X. Wen, Y. S. Han, J. D. Bai, J. He, Y. H. Wang, B. D. Yang, and J. M. Wang, “Cavity-enhanced frequency doubling from 795 nm to 397.5 nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime,” Opt. Express 22(26), 32293–32300 (2014).
    [Crossref]
  10. Y. S. Han, X. Wen, J. D. Bai, B. D. Yang, Y. H. Wang, J. He, and J. M. Wang, “Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling,” J. Opt. Soc. Am. B 31(8), 1942–1947 (2014).
    [Crossref]
  11. Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, “External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser,” Opt. Express 16(7), 4866–4871 (2008).
    [Crossref] [PubMed]
  12. M. Pizzocaro, D. Calonico, P. C. Pastor, J. Catani, G. A. Costanzo, F. Levi, and L. Lorini, “Efficient frequency doubling at 399 nm,” Appl. Opt. 53(16), 3388–3392 (2014).
    [Crossref] [PubMed]
  13. F. Billa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24(3), 576–580 (2007).
    [Crossref]
  14. M. Moller, L. M. Hoffer, G. L. Lippi, T. Ackemann, A. Gahl, and W. Lange, “Fabry-Perot and ring cavity configurations and transverse optical patterns,” J. Mod. Opt. 45(9), 1913–1926 (1998).
    [Crossref]
  15. Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283, 309 (2010).
    [Crossref]
  16. S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
    [Crossref] [PubMed]
  17. K. Hayasaka, Y. Zhang, and K. Kasai, “Generation of 22.8 mW single-frequency green light by frequency doubling of a 50-mW diode laser,” Opt. Express 12(15), 3567–3572 (2004).
    [Crossref] [PubMed]
  18. W. R. Bosenberg, A. Drobshoff, and J. I. Alexander, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21(17), 1336–1338 (1996).
    [Crossref] [PubMed]
  19. H. D. Lu, X. J. Sun, M. H. Wang, J. Su, and K. C. Peng, “Single-frequency Ti:sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss,” Opt. Express 22(20), 24551–24558 (2014).
    [Crossref] [PubMed]
  20. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonant,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  21. K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Perot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
    [Crossref]
  22. J. A. Zheng, S. Z. Zhao, Q. P. Wang, X. Y. Zhang, and L. Chen, “Influence of thermal effect on KTP type type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
    [Crossref]
  23. M. Sabaeian, L. Mousave, and H. Nadgaran, “Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: A theoretical model,” Opt. Express 18(18), 18732 (2010).
    [Crossref] [PubMed]
  24. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19) 1831–1833 (1990).
    [Crossref]
  25. N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
    [Crossref]
  26. Yajun Wang, Wenhai Yang, Haijun Zhou, Meiru Huo, and Yaohui Zheng, “Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance,” Opt. Express 21(15), 18068 (2013).
    [Crossref] [PubMed]
  27. R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
    [Crossref]

2014 (5)

2013 (2)

Yajun Wang, Wenhai Yang, Haijun Zhou, Meiru Huo, and Yaohui Zheng, “Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance,” Opt. Express 21(15), 18068 (2013).
[Crossref] [PubMed]

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

2011 (1)

2010 (2)

M. Sabaeian, L. Mousave, and H. Nadgaran, “Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: A theoretical model,” Opt. Express 18(18), 18732 (2010).
[Crossref] [PubMed]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283, 309 (2010).
[Crossref]

2009 (1)

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
[Crossref] [PubMed]

2008 (3)

Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, “External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser,” Opt. Express 16(7), 4866–4871 (2008).
[Crossref] [PubMed]

A. Predojevic, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78, 063820 (2008).
[Crossref]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

2007 (2)

G. Hetet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007).
[Crossref]

F. Billa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24(3), 576–580 (2007).
[Crossref]

2006 (1)

2005 (1)

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

2004 (1)

2001 (1)

J. A. Zheng, S. Z. Zhao, Q. P. Wang, X. Y. Zhang, and L. Chen, “Influence of thermal effect on KTP type type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[Crossref]

1998 (2)

M. Moller, L. M. Hoffer, G. L. Lippi, T. Ackemann, A. Gahl, and W. Lange, “Fabry-Perot and ring cavity configurations and transverse optical patterns,” J. Mod. Opt. 45(9), 1913–1926 (1998).
[Crossref]

J. L. Srensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80(16), 3487–3490 (1998).
[Crossref]

1997 (1)

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

1996 (1)

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19) 1831–1833 (1990).
[Crossref]

1987 (1)

P. Grangier, R. E. Slusher, B. Yurke, and A. Laporta, “Squeezed-light-enhanced polarization interferometer,” Phys. Rev. Lett. 59(19), 2153–2156 (1987).
[Crossref] [PubMed]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonant,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Ackemann, T.

M. Moller, L. M. Hoffer, G. L. Lippi, T. Ackemann, A. Gahl, and W. Lange, “Fabry-Perot and ring cavity configurations and transverse optical patterns,” J. Mod. Opt. 45(9), 1913–1926 (1998).
[Crossref]

Akamatsu, D.

Alexander, J. I.

Ast, S.

Bachor, H. A.

G. Hetet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007).
[Crossref]

Bai, J. D.

Billa, F.

Bosenberg, W. R.

Bramati, A.

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
[Crossref] [PubMed]

F. Billa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24(3), 576–580 (2007).
[Crossref]

Buchler, B. C.

G. Hetet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007).
[Crossref]

Burks, S.

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
[Crossref] [PubMed]

Byer, R. L.

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

Caballero, J. M.

A. Predojevic, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78, 063820 (2008).
[Crossref]

Calonico, D.

Catani, J.

Cha, Y. H.

Chelkowski, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Chen, L.

J. A. Zheng, S. Z. Zhao, Q. P. Wang, X. Y. Zhang, and L. Chen, “Influence of thermal effect on KTP type type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[Crossref]

Chen, L. R.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Chiummo, A.

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
[Crossref] [PubMed]

F. Billa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24(3), 576–580 (2007).
[Crossref]

Costanzo, G. A.

Danzmann, K.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonant,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Drobshoff, A.

Durak, K.

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Perot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Eberle, T.

Fejer, M. M.

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19) 1831–1833 (1990).
[Crossref]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19) 1831–1833 (1990).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonant,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Franzen, A.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Furusawa, A.

Gahl, A.

M. Moller, L. M. Hoffer, G. L. Lippi, T. Ackemann, A. Gahl, and W. Lange, “Fabry-Perot and ring cavity configurations and transverse optical patterns,” J. Mod. Opt. 45(9), 1913–1926 (1998).
[Crossref]

Giacobino, E.

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
[Crossref] [PubMed]

F. Billa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24(3), 576–580 (2007).
[Crossref]

Glockl, O.

G. Hetet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007).
[Crossref]

Gossler, S.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Grangier, P.

P. Grangier, R. E. Slusher, B. Yurke, and A. Laporta, “Squeezed-light-enhanced polarization interferometer,” Phys. Rev. Lett. 59(19), 2153–2156 (1987).
[Crossref] [PubMed]

Gustafson, E. K.

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

Hage, B.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Hald, J.

J. L. Srensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80(16), 3487–3490 (1998).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonant,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Han, J. M.

Han, Y. S.

Harb, C. C.

G. Hetet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007).
[Crossref]

Hayasaka, K.

He, J.

Hetet, G.

G. Hetet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007).
[Crossref]

Hoffer, L. M.

M. Moller, L. M. Hoffer, G. L. Lippi, T. Ackemann, A. Gahl, and W. Lange, “Fabry-Perot and ring cavity configurations and transverse optical patterns,” J. Mod. Opt. 45(9), 1913–1926 (1998).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonant,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Huo, Meiru

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19) 1831–1833 (1990).
[Crossref]

Jeong, D. Y.

Jia, X.

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
[Crossref] [PubMed]

Kasai, K.

Kim, T. S.

Ko, K. H.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonant,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kozuma, M.

Kurtsiefer, C.

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Perot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Lam, P. K.

G. Hetet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007).
[Crossref]

Lange, W.

M. Moller, L. M. Hoffer, G. L. Lippi, T. Ackemann, A. Gahl, and W. Lange, “Fabry-Perot and ring cavity configurations and transverse optical patterns,” J. Mod. Opt. 45(9), 1913–1926 (1998).
[Crossref]

Laporta, A.

P. Grangier, R. E. Slusher, B. Yurke, and A. Laporta, “Squeezed-light-enhanced polarization interferometer,” Phys. Rev. Lett. 59(19), 2153–2156 (1987).
[Crossref] [PubMed]

Latstzka, N.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Laurat, J.

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
[Crossref] [PubMed]

Lemonde, P.

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Leong, V.

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Perot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Levi, F.

Li, F. Q.

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283, 309 (2010).
[Crossref]

Li, S. J.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Lim, G.

Lippi, G. L.

M. Moller, L. M. Hoffer, G. L. Lippi, T. Ackemann, A. Gahl, and W. Lange, “Fabry-Perot and ring cavity configurations and transverse optical patterns,” J. Mod. Opt. 45(9), 1913–1926 (1998).
[Crossref]

Lorini, L.

Lu, H. D.

Mehmet, M.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Mitchell, M. W.

A. Predojevic, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78, 063820 (2008).
[Crossref]

Moller, M.

M. Moller, L. M. Hoffer, G. L. Lippi, T. Ackemann, A. Gahl, and W. Lange, “Fabry-Perot and ring cavity configurations and transverse optical patterns,” J. Mod. Opt. 45(9), 1913–1926 (1998).
[Crossref]

Mousave, L.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonant,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Nadgaran, H.

Nguyen, C. H.

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Perot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Ortalo, J.

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
[Crossref] [PubMed]

Park, H. M.

Pastor, P. C.

Peng, K. C.

H. D. Lu, X. J. Sun, M. H. Wang, J. Su, and K. C. Peng, “Single-frequency Ti:sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss,” Opt. Express 22(20), 24551–24558 (2014).
[Crossref] [PubMed]

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283, 309 (2010).
[Crossref]

Pilypas, K. A.

G. Hetet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007).
[Crossref]

Pizzocaro, M.

Polzik, E. S.

J. L. Srensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80(16), 3487–3490 (1998).
[Crossref]

Predojevic, A.

A. Predojevic, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78, 063820 (2008).
[Crossref]

Sabaeian, M.

Schnabel, R.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Slusher, R. E.

P. Grangier, R. E. Slusher, B. Yurke, and A. Laporta, “Squeezed-light-enhanced polarization interferometer,” Phys. Rev. Lett. 59(19), 2153–2156 (1987).
[Crossref] [PubMed]

Srensen, J. L.

J. L. Srensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80(16), 3487–3490 (1998).
[Crossref]

Steinlechner, S.

Straupe, S.

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Perot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Su, J.

Sun, X. J.

Tanimura, T.

Targat, R. L.

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Tian, L.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Uehara, N.

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

Vahlbruch, H.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

Villa, F.

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
[Crossref] [PubMed]

Wang, H.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Wang, J. M.

Wang, M. H.

Wang, Q. P.

J. A. Zheng, S. Z. Zhao, Q. P. Wang, X. Y. Zhang, and L. Chen, “Influence of thermal effect on KTP type type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[Crossref]

Wang, Y. H.

Wang, Y. J.

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283, 309 (2010).
[Crossref]

Wang, Yajun

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonant,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Wen, X.

Wu, Y. L.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Xie, C. D.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Xu, Z. X.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Yan, Z. H.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Yang, B. D.

Yang, Wenhai

Yokoi, Y.

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19) 1831–1833 (1990).
[Crossref]

Yurke, B.

P. Grangier, R. E. Slusher, B. Yurke, and A. Laporta, “Squeezed-light-enhanced polarization interferometer,” Phys. Rev. Lett. 59(19), 2153–2156 (1987).
[Crossref] [PubMed]

Zhai, Z.

A. Predojevic, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78, 063820 (2008).
[Crossref]

Zhang, K. S.

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283, 309 (2010).
[Crossref]

Zhang, X. Y.

J. A. Zheng, S. Z. Zhao, Q. P. Wang, X. Y. Zhang, and L. Chen, “Influence of thermal effect on KTP type type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[Crossref]

Zhang, Y.

Zhang, Z. Y.

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Zhao, S. Z.

J. A. Zheng, S. Z. Zhao, Q. P. Wang, X. Y. Zhang, and L. Chen, “Influence of thermal effect on KTP type type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[Crossref]

Zheng, J. A.

J. A. Zheng, S. Z. Zhao, Q. P. Wang, X. Y. Zhang, and L. Chen, “Influence of thermal effect on KTP type type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[Crossref]

Zheng, Y. H.

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283, 309 (2010).
[Crossref]

Zheng, Yaohui

Zhou, Haijun

Zondy, J.-J.

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonant,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19) 1831–1833 (1990).
[Crossref]

J. Mod. Opt. (1)

M. Moller, L. M. Hoffer, G. L. Lippi, T. Ackemann, A. Gahl, and W. Lange, “Fabry-Perot and ring cavity configurations and transverse optical patterns,” J. Mod. Opt. 45(9), 1913–1926 (1998).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B: At. Mol. Opt. Phys. (1)

G. Hetet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B: At. Mol. Opt. Phys. 40, 221–226 (2007).
[Crossref]

New J. Phys. (1)

K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, “Diffraction-limited Fabry-Perot cavity in the near concentric regime,” New J. Phys. 16, 103002 (2014).
[Crossref]

Opt. Commun. (3)

J. A. Zheng, S. Z. Zhao, Q. P. Wang, X. Y. Zhang, and L. Chen, “Influence of thermal effect on KTP type type-II phase-matching second-harmonic generation,” Opt. Commun. 199, 207–214 (2001).
[Crossref]

R. L. Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005).
[Crossref]

Y. H. Zheng, F. Q. Li, Y. J. Wang, K. S. Zhang, and K. C. Peng, “High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter,” Opt. Commun. 283, 309 (2010).
[Crossref]

Opt. Express (7)

K. Hayasaka, Y. Zhang, and K. Kasai, “Generation of 22.8 mW single-frequency green light by frequency doubling of a 50-mW diode laser,” Opt. Express 12(15), 3567–3572 (2004).
[Crossref] [PubMed]

Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, “External-cavity frequency doubling of a 5-W 756-nm injection-locked Ti:sapphire laser,” Opt. Express 16(7), 4866–4871 (2008).
[Crossref] [PubMed]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

X. Wen, Y. S. Han, J. D. Bai, J. He, Y. H. Wang, B. D. Yang, and J. M. Wang, “Cavity-enhanced frequency doubling from 795 nm to 397.5 nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime,” Opt. Express 22(26), 32293–32300 (2014).
[Crossref]

M. Sabaeian, L. Mousave, and H. Nadgaran, “Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: A theoretical model,” Opt. Express 18(18), 18732 (2010).
[Crossref] [PubMed]

H. D. Lu, X. J. Sun, M. H. Wang, J. Su, and K. C. Peng, “Single-frequency Ti:sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss,” Opt. Express 22(20), 24551–24558 (2014).
[Crossref] [PubMed]

Yajun Wang, Wenhai Yang, Haijun Zhou, Meiru Huo, and Yaohui Zheng, “Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance,” Opt. Express 21(15), 18068 (2013).
[Crossref] [PubMed]

Opt. Express. (1)

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express. 17(5) 3777–3781 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

A. Predojevic, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78, 063820 (2008).
[Crossref]

Phys. Rev. Lett. (4)

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Latstzka, S. Gossler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008).
[Crossref] [PubMed]

P. Grangier, R. E. Slusher, B. Yurke, and A. Laporta, “Squeezed-light-enhanced polarization interferometer,” Phys. Rev. Lett. 59(19), 2153–2156 (1987).
[Crossref] [PubMed]

J. L. Srensen, J. Hald, and E. S. Polzik, “Quantum noise of an atomic spin polarization measurement,” Phys. Rev. Lett. 80(16), 3487–3490 (1998).
[Crossref]

Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degenearcy,” Phys. Rev. Lett. 111(24), 240503 (2013).
[Crossref]

Proc. SPIE (1)

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the experimental setup. The doubler is formed by linear standing-wave cavity and ring cavity, respectively. FR: Faraday rotator; EOM: electro-optical modulator.
Fig. 2
Fig. 2 Unfolding transformation of the linear standing-wave cavity. IC: input coupler; OC: output coupler. The PPKTP crystal appears twice in every round trip.
Fig. 3
Fig. 3 Thermal focus length as a function of the input power. Real line: standing-wave cavity; Dashed line: ring cavity.
Fig. 4
Fig. 4 Waist radius of the cavities at the location of the PPKTP crystal versus the thermal focus length.
Fig. 5
Fig. 5 Waist radius of the cavities at the location of the PPKTP crystal versus the input power.
Fig. 6
Fig. 6 Mode-matching efficiency between the input beam and external frequency-doubling cavity versus the input power.
Fig. 7
Fig. 7 Power of second harmonic wave versus the input power of the fundamental wave.
Fig. 8
Fig. 8 Beam quality factor of the output beam.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P 2 ω = 8 ω 2 d eff 2 l 2 c 3 ε 0 ( n e 2 ω ) ( n e ω ) 2 P cir 2 4 π ω 0 2
P cir = P in T ( 1 ( 1 T ) ( 1 L ) ( 1 Γ ( P cir ) ) ) 2
η RC = 1 e α l
η SWC = 1 e 2 α l
f = π K c ω 0 2 η P 2 ω ( d n / d T )
κ 00 = 16 Π α = x , y { 0 l 1 W α 2 ( z ) + W α , e 2 ( z ) d z } 2 Π α { 0 l 1 W α 2 ( z ) d z } { 0 l 1 W α , e 2 ( z ) d z }
W α 2 ( z ) = W α 0 2 { 1 + ( ( z z α ) z α 0 ) 2 }
z α 0 = π W α 0 2 / λ

Metrics