Abstract

We demonstrate, both theoretically and experimentally, a pseudo-random, two-dimensional optical phased array (OPA) concept based on tandem injection locking of 64-element vertical cavity surface emitting laser (VCSEL) arrays. A low cavity-Q VCSEL design resulted in an injection locking optical power of less than 1 μW per VCSEL, providing large OPA scaling potential. Tandem injection locking of two VCSEL arrays resulted in measured controllable optical phase change of 0-1.6π. A high quality beam formed with suppressed grating lobes due to the pseudo-random array design was demonstrated with performance close to simulated results. A preliminary 2.2° x 1.2° beam steering example using the tandem arrays was also demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional beam steering analysis in a phase-coupled vertical cavity surface emitting laser array

Meng Xun, Yun Sun, Jingtao Zhou, Chen Xu, Yiyang Xie, Hao Wang, Qiang Kan, Zhi Jin, Xinyu Liu, and Dexin Wu
OSA Continuum 2(6) 1974-1981 (2019)

Phase tuning in two-dimensional coherently coupled vertical-cavity surface-emitting laser array

Meng Xun, Chen Xu, Yiyang Xie, Jun Deng, Guoqing Jiang, Guanzhong Pan, Yibo Dong, and Hongda Chen
Appl. Opt. 55(20) 5439-5443 (2016)

Analysis of optical coupling behavior in two-dimensional implant-defined coherently coupled vertical-cavity surface-emitting laser arrays

Guanzhong Pan, Yiyang Xie, Chen Xu, Yibo Dong, Jun Deng, Hongda Chen, and Jie Sun
Photon. Res. 6(11) 1048-1055 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” IEEE Proc. 97, 1078–1096 (2009).
    [Crossref]
  2. J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
    [Crossref]
  3. F. Aflatouni and H. Hashemi, “An electronically controlled semiconductor laser phased array,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.
    [Crossref]
  4. B.-W. Yoo, M. Megens, T. Chan, T. Sun, W. Yang, C. J. Chang-Hasnain, D. A. Horsley, and M. C. Wu, “Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering,” Opt. Express 21(10), 12238–12248 (2013).
    [Crossref] [PubMed]
  5. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  6. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  7. G. Hergenhan, B. Lücke, and U. Brauch, “Coherent coupling of vertical-cavity surface-emitting laser arrays and efficient beam combining by diffractive optical elements: concept and experimental verification,” Appl. Opt. 42(9), 1667–1680 (2003).
    [Crossref] [PubMed]
  8. C. A. Balanis, Antenna Theory Analysis and Design, 2nd ed. (John Wiley & Sons, 1997).
  9. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
    [Crossref]
  10. B. Lucke, G. Hergenhan, U. Branch, and A. Giesen, “Phase tuning of injection-locked VCSELs,” IEEE Photonics Technol. Lett. 13(2), 100–102 (2001).
    [Crossref]
  11. J. T. Verdeyen, “Laser Electronics,” 3rd ed. (Prentice Hall, 1995), Ch. 6.
  12. W. Zeller, M. Kamp, and J. Koeth, “High power DFB laser diodes,” Proc. SPIE 7583, 75830R1 (2010).

2013 (2)

2011 (1)

2006 (1)

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[Crossref]

2003 (1)

2001 (1)

B. Lucke, G. Hergenhan, U. Branch, and A. Giesen, “Phase tuning of injection-locked VCSELs,” IEEE Photonics Technol. Lett. 13(2), 100–102 (2001).
[Crossref]

1985 (1)

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Aflatouni, F.

F. Aflatouni and H. Hashemi, “An electronically controlled semiconductor laser phased array,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.
[Crossref]

Bovington, J. T.

Bowers, J. E.

Branch, U.

B. Lucke, G. Hergenhan, U. Branch, and A. Giesen, “Phase tuning of injection-locked VCSELs,” IEEE Photonics Technol. Lett. 13(2), 100–102 (2001).
[Crossref]

Brauch, U.

Chan, T.

Chang-Hasnain, C. J.

Coldren, L. A.

Doylend, J. K.

Giesen, A.

B. Lucke, G. Hergenhan, U. Branch, and A. Giesen, “Phase tuning of injection-locked VCSELs,” IEEE Photonics Technol. Lett. 13(2), 100–102 (2001).
[Crossref]

Hashemi, H.

F. Aflatouni and H. Hashemi, “An electronically controlled semiconductor laser phased array,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.
[Crossref]

Heck, M. J. R.

Hergenhan, G.

Higgs, C.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[Crossref]

Horsley, D. A.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Jacobsen, G.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Kansky, J. E.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[Crossref]

Lawrence, R. C.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[Crossref]

Lucke, B.

B. Lucke, G. Hergenhan, U. Branch, and A. Giesen, “Phase tuning of injection-locked VCSELs,” IEEE Photonics Technol. Lett. 13(2), 100–102 (2001).
[Crossref]

Lücke, B.

Megens, M.

Mogensen, F.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Murphy, D. V.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[Crossref]

Olesen, H.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Peters, J. D.

Shaw, S. E. J.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[Crossref]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Sun, T.

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Wu, M. C.

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Yang, W.

Yoo, B.-W.

Yu, C. X.

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Lucke, G. Hergenhan, U. Branch, and A. Giesen, “Phase tuning of injection-locked VCSELs,” IEEE Photonics Technol. Lett. 13(2), 100–102 (2001).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Proc. SPIE (1)

J. E. Kansky, C. X. Yu, D. V. Murphy, S. E. J. Shaw, R. C. Lawrence, and C. Higgs, “Beam control of a 2D polarization maintaining fiber optic phased array with high-fiber count,” Proc. SPIE 6306, 63060G (2006).
[Crossref]

Other (5)

F. Aflatouni and H. Hashemi, “An electronically controlled semiconductor laser phased array,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2012), pp. 1–3.
[Crossref]

C. A. Balanis, Antenna Theory Analysis and Design, 2nd ed. (John Wiley & Sons, 1997).

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” IEEE Proc. 97, 1078–1096 (2009).
[Crossref]

J. T. Verdeyen, “Laser Electronics,” 3rd ed. (Prentice Hall, 1995), Ch. 6.

W. Zeller, M. Kamp, and J. Koeth, “High power DFB laser diodes,” Proc. SPIE 7583, 75830R1 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Schematic of the novel 2D OPA architecture composed of 2 tandem injection-locked VCSEL arrays with a single master laser, and (b) the layout of the 64-element pseudo-random VCSEL array used in this OPA architecture.
Fig. 2
Fig. 2 (a) Comparison of simulated far-field patterns for a 89x89-element periodic and 8000-element pseudo-random phased arrays with identical array dimensions and elemental divergence angle, clearly showing the elimination of the grating lobes in the latter. (b) Close-up view of the central lobe of the two arrays, indicating almost identical patterns.
Fig. 3
Fig. 3 (left) SEM photomicrograph of a fully processed 64-element pseudo-random VCSEL array showing the metal interconnect lines for each individual VCSEL, and (right) a close-up view of a single VCSEL element showing its mesa structure.
Fig. 4
Fig. 4 (a) Measured LIV curves of a typical low cavity-Q VCSEL for both forward and backward emitting light, and (b) optical spectrum of the single mode VCSEL emission with a side mode suppression ratio of 35 dB.
Fig. 5
Fig. 5 Schematic of the optical setup used for the evaluation of the tandem injection locked VCSEL-based optical phased array. A CCD camera was used for the detection of the near-field interference fringes for each set of injection locked VCSELs from which their relative optical phase was measured. Another CCD camera was used to record the far-field pattern of the formed optical beam. DBR-LD: distributed Bragg reflector laser diode, Col: fiber collimator, VA: variable attenuator, BS: beam splitter, Iso: optical isolator.
Fig. 6
Fig. 6 Interference fringe patterns of 60 injection locked VCSELs in a 64-element pseudo-random array detected using a high resolution CCD camera.
Fig. 7
Fig. 7 (a) Measured time dependent phase change of an injection locked VCSEL switched from one extreme edge of the locking range to the other, indicating a phase drift of <7% within the 33 minutes of measurement time. (b) Measured maximum phase change of injection locked VCSEL as a function of the injection light power level, showing 3 regimes of locking.
Fig. 8
Fig. 8 (a) Measured phase change of the first VCSEL in the tandem injection locking arrangement for an applied linear sawtooth current waveform shown in the inset. (b) Measured phase change of the output VCSEL in the tandem injection locking configuration for the synchronized linear ramp drive current waveforms applied to the two VCSELs, as shown in the inset.
Fig. 9
Fig. 9 Comparison of simulated far-field patterns of a beam steered at 5°for a 64-element pseudo-random phased array with an ideal 0-2π phase control compared to an identical one with a more limited 0-1.5π phase control. This phase control limitation results in only 0.16 dB loss of the main lobe intensity and 0.56 dB increase in side-lobe level
Fig. 10
Fig. 10 (a) Measured far-field image of a beam formed using a 50-element injection-locked pseudo-random VCSEL array demonstrating a minimum side-lobe suppression value of 7.0 dB, with no grating lobes. (b) Simulated one-dimensional far-field pattern of the same array measured in (a) for 18 azimuthal direction cuts, showing a minimum side-lobe suppression value of 7.7 dB, in good agreement with the corresponding measured value.
Fig. 11
Fig. 11 Electronic steering of 2.2° x 1.2° demonstrated with 16 pairs of VCSELs in two tandem injection locked pseudo-random VCSEL arrays.
Fig. 12
Fig. 12 Schematic of a vertically integrated optical phased array with tandem injection locked VCSEL arrays, a master laser diode coupled to a grating outcoupler providing the master injection light beam, and a microlens array for efficient coupling of the master laser beam to the first VCSEL array.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sin( θ gl )Sin(θ ) 0 = nλ d
Δ f L =± 1R 2π π rt 1+ α 2 P inj P 0
P LD = N el P inj /(FF η μL η LC η OC )

Metrics