Abstract

The use of fiber-optic sensors for ultrasound (US) detection has many advantages over conventional piezoelectric detectors. However, the issue of multiplexing remains a major challenge. Here, a novel approach for multiplexing fiber-optic based US sensors using swept frequency interferometry is introduced. Light from a coherent swept source propagates in an all-fiber interferometric network made of a reference arm and a parallel connection of N sensing arms. Each sensing arm comprises a short polyimide coated sensing section (~4cm), which is exposed to the US excitation, preceded by a delay of different length. When the instantaneous frequency of the laser is linearly swept, the receiver output contains N harmonic beat components which correspond to the various optical paths. Exposing the sensing sections to US excitation introduces phase modulation of the harmonic components. The US-induced signals can be separated in the frequency domain and be extracted from their carriers by common demodulation techniques. The method was demonstrated by multiplexing 4 sensing fibers and detecting microsecond US pulses which were generated by a 2.25MHz ultrasound transducer. The pulses were successfully measured by all sensing fibers without noticeable cross-talk.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diaphragm-based optical fiber sensor array for multipoint acoustic detection

Jingyi Wang, Fan Ai, Qizhen Sun, Tao Liu, Hao Li, Zhijun Yan, and Deming Liu
Opt. Express 26(19) 25293-25304 (2018)

Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer

Fellipe Grillo Peternella, Boling Ouyang, Roland Horsten, Michael Haverdings, Pim Kat, and Jacob Caro
Opt. Express 25(25) 31622-31639 (2017)

Cryogenic fluid level sensors multiplexed by frequency-shifted interferometry

Fei Ye, Tong Chen, Di Xu, Kevin P. Chen, Bing Qi, and Li Qian
Appl. Opt. 49(26) 4898-4905 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. Chen, Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization (World Scientific, 2007).
  2. R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University, 2007).
  3. J. P. Marage, Y. Mori, and M. Kutz, Sonars and Underwater Acoustics (John Wiley & Sons 2013)
  4. K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
    [Crossref] [PubMed]
  5. A. Rosenthal, S. Kellnberger, M. Omar, D. Razansky, and V. Ntziachristos, “Wideband optical detector of ultrasound for medical imaging applications,” J. Vis. Exp. 11(87), 50847 (2014).
    [PubMed]
  6. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  7. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  8. A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic Inversion in optoacoustic tomography: a review,” Curr. Med. Imaging Rev. 9(4), 318–336 (2014).
    [Crossref] [PubMed]
  9. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
    [Crossref] [PubMed]
  10. J. Bauer-Marschallinger, K. Felbermayer, K.-D. Bouchal, I. A. Veres, H. Grün, P. Burgholzer, and T. Berer, “Photoacoustic projection imaging using a 64-channel fiber optic detector array,” in SPIE BiOS, A. A. Oraevsky and L. V. Wang, eds. (International Society for Optics and Photonics, 2015), p. 93233U.
  11. L. Wang, Photoacoustic Imaging and Spectroscopy (CRC, 2009).
  12. H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
    [Crossref] [PubMed]
  13. H. Lamela, D. Gallego, and A. Oraevsky, “Optoacoustic imaging using fiber-optic interferometric sensors,” Opt. Lett. 34(23), 3695–3697 (2009).
    [Crossref] [PubMed]
  14. A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
    [Crossref]
  15. T. Fujisue, K. Nakamura, and S. Ueha, “Demodulation of Acoustic Signals in Fiber Bragg Grating Ultrasonic Sensors Using Arrayed Waveguide Gratings,” Jpn. J. Appl. Phys. 45(5B), 4577–4579 (2006).
    [Crossref]
  16. A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
    [Crossref]
  17. S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer étalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
    [Crossref]
  18. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20(17), 19016–19029 (2012).
    [Crossref] [PubMed]
  19. I. C. M. Littler, M. B. Gray, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies,” Opt. Express 17(13), 11077–11087 (2009).
    [Crossref] [PubMed]
  20. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
    [Crossref]
  21. H. Gabai, I. Steinberg, and A. Eyal, “Broadband ultrasonic sensor array via optical frequency domain reflectometry,” in SPIE BiOS, A. A. Oraevsky and L. V. Wang, eds. (International Society for Optics and Photonics, 2015), p. 93231L.
  22. D. K. Gifford, S. T. Kreger, A. K. Sang, M. E. Froggatt, R. G. Duncan, M. S. Wolfe, and B. J. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” in Proceedings of SPIE, E. Udd, ed. (SPIE, 2007), Vol. 6770, p. 67700F.
    [Crossref]
  23. W. Eickhoff, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693 (1981).
    [Crossref]
  24. D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
    [Crossref] [PubMed]
  25. P. G. Kenny, J. J. Gruber, and J. M. Smith, “Ultrasonic transducer characterization,” Mater. Eval. 45, 730–735 (1987)
  26. C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust. 24(4), 320–327 (1976).
    [Crossref]
  27. V. A. Del Grosso, “Speed of sound in pure water,” J. Acoust. Soc. Am. 52(5B), 1442 (1972).
    [Crossref]
  28. A. Bar Am, D. Arbel, and A. Eyal, “OFDR with double interrogation for dynamic quasi-distributed sensing,” Opt. Express 8, 8823–8830 (2014).
  29. H. Gabai, Y. Botsev, M. Hahami, and A. Eyal, “Optical frequency domain reflectometry at maximum update rate using I/Q detection,” Opt. Lett. 40(8), 1725–1728 (2015).
    [Crossref] [PubMed]
  30. M. Moccia, M. Consales, A. Ladicicco, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, “Resonant hydrophone based on coated fiber Bragg gratings,” J. Lightwave Technol. 30(15), 2472–2481 (2012).
    [Crossref]

2015 (1)

2014 (6)

D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
[Crossref] [PubMed]

A. Rosenthal, S. Kellnberger, M. Omar, D. Razansky, and V. Ntziachristos, “Wideband optical detector of ultrasound for medical imaging applications,” J. Vis. Exp. 11(87), 50847 (2014).
[PubMed]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic Inversion in optoacoustic tomography: a review,” Curr. Med. Imaging Rev. 9(4), 318–336 (2014).
[Crossref] [PubMed]

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Bar Am, D. Arbel, and A. Eyal, “OFDR with double interrogation for dynamic quasi-distributed sensing,” Opt. Express 8, 8823–8830 (2014).

2012 (2)

2011 (2)

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

2009 (2)

2006 (1)

T. Fujisue, K. Nakamura, and S. Ueha, “Demodulation of Acoustic Signals in Fiber Bragg Grating Ultrasonic Sensors Using Arrayed Waveguide Gratings,” Jpn. J. Appl. Phys. 45(5B), 4577–4579 (2006).
[Crossref]

2005 (2)

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer étalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

2004 (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

2002 (1)

K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

1987 (1)

P. G. Kenny, J. J. Gruber, and J. M. Smith, “Ultrasonic transducer characterization,” Mater. Eval. 45, 730–735 (1987)

1981 (1)

W. Eickhoff, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693 (1981).
[Crossref]

1976 (1)

C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust. 24(4), 320–327 (1976).
[Crossref]

1972 (1)

V. A. Del Grosso, “Speed of sound in pure water,” J. Acoust. Soc. Am. 52(5B), 1442 (1972).
[Crossref]

Alves, C. H.

K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Arbel, D.

A. Bar Am, D. Arbel, and A. Eyal, “OFDR with double interrogation for dynamic quasi-distributed sensing,” Opt. Express 8, 8823–8830 (2014).

D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
[Crossref] [PubMed]

Ashkenazi, S.

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer étalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

Bar Am, A.

A. Bar Am, D. Arbel, and A. Eyal, “OFDR with double interrogation for dynamic quasi-distributed sensing,” Opt. Express 8, 8823–8830 (2014).

Botsev, Y.

Bozhko, D.

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

Buma, T.

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer étalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

Burgholzer, P.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

Cannata, J. M.

K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Carter, G.

C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust. 24(4), 320–327 (1976).
[Crossref]

Chekkoury, A.

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

Chen, W. H.

K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Chow, J. H.

Consales, M.

Cusano, A.

Cutolo, A.

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

Del Grosso, V. A.

V. A. Del Grosso, “Speed of sound in pure water,” J. Acoust. Soc. Am. 52(5B), 1442 (1972).
[Crossref]

Eickhoff, W.

W. Eickhoff, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693 (1981).
[Crossref]

Estrada, H.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

Eyal, A.

Fujisue, T.

T. Fujisue, K. Nakamura, and S. Ueha, “Demodulation of Acoustic Signals in Fiber Bragg Grating Ultrasonic Sensors Using Arrayed Waveguide Gratings,” Jpn. J. Appl. Phys. 45(5B), 4577–4579 (2006).
[Crossref]

Gabai, H.

Galdi, V.

Gallego, D.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

H. Lamela, D. Gallego, and A. Oraevsky, “Optoacoustic imaging using fiber-optic interferometric sensors,” Opt. Lett. 34(23), 3695–3697 (2009).
[Crossref] [PubMed]

Gray, M. B.

Gruber, J. J.

P. G. Kenny, J. J. Gruber, and J. M. Smith, “Ultrasonic transducer characterization,” Mater. Eval. 45, 730–735 (1987)

Gutierrez, R.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

Hahami, M.

Haltmeier, M.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

Hofer, C.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

Hou, Y.

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer étalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

Kellnberger, S.

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, S. Kellnberger, M. Omar, D. Razansky, and V. Ntziachristos, “Wideband optical detector of ultrasound for medical imaging applications,” J. Vis. Exp. 11(87), 50847 (2014).
[PubMed]

Kenny, P. G.

P. G. Kenny, J. J. Gruber, and J. M. Smith, “Ultrasonic transducer characterization,” Mater. Eval. 45, 730–735 (1987)

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

Knapp, C.

C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust. 24(4), 320–327 (1976).
[Crossref]

Ladicicco, A.

Lamela, H.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

H. Lamela, D. Gallego, and A. Oraevsky, “Optoacoustic imaging using fiber-optic interferometric sensors,” Opt. Lett. 34(23), 3695–3697 (2009).
[Crossref] [PubMed]

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Littler, I. C. M.

McClelland, D. E.

Meyer, R. J.

K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Moccia, M.

Nakamura, K.

T. Fujisue, K. Nakamura, and S. Ueha, “Demodulation of Acoustic Signals in Fiber Bragg Grating Ultrasonic Sensors Using Arrayed Waveguide Gratings,” Jpn. J. Appl. Phys. 45(5B), 4577–4579 (2006).
[Crossref]

Ntziachristos, V.

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic Inversion in optoacoustic tomography: a review,” Curr. Med. Imaging Rev. 9(4), 318–336 (2014).
[Crossref] [PubMed]

A. Rosenthal, S. Kellnberger, M. Omar, D. Razansky, and V. Ntziachristos, “Wideband optical detector of ultrasound for medical imaging applications,” J. Vis. Exp. 11(87), 50847 (2014).
[PubMed]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20(17), 19016–19029 (2012).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

O’Donnell, M.

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer étalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

Omar, M.

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

A. Rosenthal, S. Kellnberger, M. Omar, D. Razansky, and V. Ntziachristos, “Wideband optical detector of ultrasound for medical imaging applications,” J. Vis. Exp. 11(87), 50847 (2014).
[PubMed]

Oraevsky, A.

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

H. Lamela, D. Gallego, and A. Oraevsky, “Optoacoustic imaging using fiber-optic interferometric sensors,” Opt. Lett. 34(23), 3695–3697 (2009).
[Crossref] [PubMed]

Paltauf, G.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

Pisco, M.

Razansky, D.

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic Inversion in optoacoustic tomography: a review,” Curr. Med. Imaging Rev. 9(4), 318–336 (2014).
[Crossref] [PubMed]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, S. Kellnberger, M. Omar, D. Razansky, and V. Ntziachristos, “Wideband optical detector of ultrasound for medical imaging applications,” J. Vis. Exp. 11(87), 50847 (2014).
[PubMed]

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20(17), 19016–19029 (2012).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

Ritter, T. A.

K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Rosenthal, A.

A. Rosenthal, S. Kellnberger, M. Omar, D. Razansky, and V. Ntziachristos, “Wideband optical detector of ultrasound for medical imaging applications,” J. Vis. Exp. 11(87), 50847 (2014).
[PubMed]

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic Inversion in optoacoustic tomography: a review,” Curr. Med. Imaging Rev. 9(4), 318–336 (2014).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20(17), 19016–19029 (2012).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

Scherzer, O.

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

Shaddock, D. A.

Shung, K. K.

K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Smith, J. M.

P. G. Kenny, J. J. Gruber, and J. M. Smith, “Ultrasonic transducer characterization,” Mater. Eval. 45, 730–735 (1987)

Snook, K. A.

K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Ueha, S.

T. Fujisue, K. Nakamura, and S. Ueha, “Demodulation of Acoustic Signals in Fiber Bragg Grating Ultrasonic Sensors Using Arrayed Waveguide Gratings,” Jpn. J. Appl. Phys. 45(5B), 4577–4579 (2006).
[Crossref]

Zhao, J. Z.

K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. Rosenthal, M. Omar, H. Estrada, S. Kellnberger, D. Razansky, and V. Ntziachristos, “Embedded ultrasound sensor in a silicon-on-insulator photonic platform,” Appl. Phys. Lett. 104(2), 021116 (2014).
[Crossref]

S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer étalon,” Appl. Phys. Lett. 86(13), 134102 (2005).
[Crossref]

W. Eickhoff, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693 (1981).
[Crossref]

Curr. Med. Imaging Rev. (1)

A. Rosenthal, V. Ntziachristos, and D. Razansky, “Acoustic Inversion in optoacoustic tomography: a review,” Curr. Med. Imaging Rev. 9(4), 318–336 (2014).
[Crossref] [PubMed]

IEEE Trans. Acoust. (1)

C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust. 24(4), 320–327 (1976).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005).
[Crossref] [PubMed]

K. A. Snook, J. Z. Zhao, C. H. Alves, J. M. Cannata, W. H. Chen, R. J. Meyer, T. A. Ritter, and K. K. Shung, “Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(2), 169–176 (2002).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

V. A. Del Grosso, “Speed of sound in pure water,” J. Acoust. Soc. Am. 52(5B), 1442 (1972).
[Crossref]

J. Biophotonics (1)

H. Lamela, D. Gallego, R. Gutierrez, and A. Oraevsky, “Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging,” J. Biophotonics 4(3), 184–192 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

J. Vis. Exp. (1)

A. Rosenthal, S. Kellnberger, M. Omar, D. Razansky, and V. Ntziachristos, “Wideband optical detector of ultrasound for medical imaging applications,” J. Vis. Exp. 11(87), 50847 (2014).
[PubMed]

Jpn. J. Appl. Phys. (1)

T. Fujisue, K. Nakamura, and S. Ueha, “Demodulation of Acoustic Signals in Fiber Bragg Grating Ultrasonic Sensors Using Arrayed Waveguide Gratings,” Jpn. J. Appl. Phys. 45(5B), 4577–4579 (2006).
[Crossref]

Laser Photonics Rev. (1)

A. Rosenthal, S. Kellnberger, D. Bozhko, A. Chekkoury, M. Omar, D. Razansky, and V. Ntziachristos, “Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications,” Laser Photonics Rev. 8(3), 450–457 (2014).
[Crossref]

Mater. Eval. (1)

P. G. Kenny, J. J. Gruber, and J. M. Smith, “Ultrasonic transducer characterization,” Mater. Eval. 45, 730–735 (1987)

Opt. Express (4)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Lett. (3)

Other (7)

H. Gabai, I. Steinberg, and A. Eyal, “Broadband ultrasonic sensor array via optical frequency domain reflectometry,” in SPIE BiOS, A. A. Oraevsky and L. V. Wang, eds. (International Society for Optics and Photonics, 2015), p. 93231L.

D. K. Gifford, S. T. Kreger, A. K. Sang, M. E. Froggatt, R. G. Duncan, M. S. Wolfe, and B. J. Soller, “Swept-wavelength interferometric interrogation of fiber Rayleigh scatter for distributed sensing applications,” in Proceedings of SPIE, E. Udd, ed. (SPIE, 2007), Vol. 6770, p. 67700F.
[Crossref]

C. Chen, Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization (World Scientific, 2007).

R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University, 2007).

J. P. Marage, Y. Mori, and M. Kutz, Sonars and Underwater Acoustics (John Wiley & Sons 2013)

J. Bauer-Marschallinger, K. Felbermayer, K.-D. Bouchal, I. A. Veres, H. Grün, P. Burgholzer, and T. Berer, “Photoacoustic projection imaging using a 64-channel fiber optic detector array,” in SPIE BiOS, A. A. Oraevsky and L. V. Wang, eds. (International Society for Optics and Photonics, 2015), p. 93233U.

L. Wang, Photoacoustic Imaging and Spectroscopy (CRC, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Optical setup for US SWI sensing and multiplexing. (a) Reflection mode configuration using a circulator and 1xN coupler, (b) Transmission mode configuration using two 1xN couplers.
Fig. 2
Fig. 2 SFI sensing timing scheme.
Fig. 3
Fig. 3 Experimental setup.
Fig. 4
Fig. 4 Consecutive measurements of US pulses, acquired by a single sensor, without (a) and with (b) normalization.
Fig. 5
Fig. 5 Experimental results - multiplexing of four US sensors. The measured pulses before (a) and after (b) optical delay compensation. (c) The excitation pulse as was measured by the pulse-echo technique.
Fig. 6
Fig. 6 Qualitative estimation of the speed of sound in water.
Fig. 7
Fig. 7 Measured US pluses for four positions of the transducer.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E Signal ( t )= E 0 i=1 N A i exp{ j( ω 0 ( t τ i )+πγ ( t τ i ) 2 θ i ( t ) ) }
V( t )=α E 0 2 W p ( t ) i=1 N A i exp{ j( ω i t+ φ i + θ i ( t ) ) }+c.c
θ i ( t )= η i P US ( t )= η i A US ( t τ US )cos[ ω US ( t τ US ) ]
exp{ j η i cos[ ω US ( t τ US ) ] A US ( t τ US ) } 1+j η i cos[ ω US ( t τ US ) ] A US ( t τ US )
V ˜ ( ω )= E 0 2 α i=1 N A i exp{ j φ i } δ( ω ω i ) +0.5 A i η i exp{ j( φ i ω US τ US ) } A ˜ US ( ω ω i ω US ) +0.5 A i η i exp{ j( φ i + ω US τ US ) } A ˜ US ( ω ω i + ω US )
P ^ US,i ( t ) 1 { ( V ˜ ( ω ) W D ( ω ω i ) V ˜ ( ω i ) )*δ( ω+ ω i ) }
σ V = [ ( σ Δz Δz V ^ ) 2 + ( σ Δt Δt V ^ ) 2 ] 0.5

Metrics