Abstract

A numerical modeling is developed for 30-kW class liquid-convection-cooled elastically-mounted Nd:YAG multi-slab laser resonator configuration. The modeling exhibits the thermal effects and resultant wavefront aberration of the gain module under flow cooling and CW pumping at 100-kW level, the self-reproducing oscillating mode within the large-aperture cavity, as well as the beam quality enhancement by adaptive optics. The simulation results predict a CW output power of 31 kW with the optical-optical efficiency of 26.1% obtained from a modified resonator configuration with dual gain modules that have opposite flow directions, while the beam quality can be improved to β<2 after the correction of a deformable mirror.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
7kW direct-liquid-cooled side-pumped Nd:YAG multi-disk laser resonator

Ke Wang, Bo Tu, Chunyan Jia, Jianli Shang, Xiangchao An, Yuan Liao, Zhi Xu, Jingwei Guo, Jiayu Yi, Yi Yu, Hua Su, Qingsong Gao, Xiaojun Wang, Wanfa Liu, and Kai Zhang
Opt. Express 24(13) 15012-15020 (2016)

Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd:YLF thin disk laser resonator

Zhibin Ye, Chong Liu, Bo Tu, Ke Wang, Qingsong Gao, Chun Tang, and Zhen Cai
Opt. Express 24(2) 1758-1772 (2016)

8.2  kW high beam quality quasi-continuous-wave face-pumped Nd:YAG slab amplifier

Zhong-zheng Chen, Yi-ting Xu, Ya-ding Guo, Bao-shan Wang, Jian Xu, Jia-lin Xu, Hong-wei Gao, Lei Yuan, Hong-tao Yuan, Yan-yong Lin, Yun-sheng Xiao, Yong Bo, Qin-jun Peng, Wen-qiang Lei, Da-fu Cui, and Zu-yan Xu
Appl. Opt. 54(16) 5011-5015 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Minassian, B. Thompson, and M. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
    [Crossref]
  2. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(64), 634–638 (2005).
  3. A. E. Blume and K. F. Tittel, “Thermal effects in laser amplifiers and oscillators,” Appl. Opt. 3(4), 527–530 (1964).
    [Crossref]
  4. V. Sazegari, M. R. Milani, and A. K. Jafari, “Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers,” Appl. Opt. 49(36), 6910–6916 (2010).
    [Crossref] [PubMed]
  5. H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim (2007), paper WP_015.
    [Crossref]
  6. J. Wang, J. Min, and Y. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
    [Crossref]
  7. H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
    [Crossref]
  8. A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® laser program” in Conference on Lasers and Electro-Optics (2010), paper JThH2.
    [Crossref]
  9. V. Coffey, “High-energy lasers: new advances in defense applications,” Opt. Photonics News 25(10), 28–35 (2014).
    [Crossref]
  10. “High Energy Liquid Laser Area Defense System,” http://en.wikipedia.org/wiki/High_Energy_Liquid_Laser_Area_Defense_System .
  11. M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S. Patent 7,366,211 (April 29, 2008).
  12. X. Fu, P. Li, Q. Liu, and M. Gong, “3kW liquid-cooled elastically-supported Nd:YAG multi-slab CW laser resonator,” Opt. Express 22(15), 18421–18432 (2014).
    [Crossref] [PubMed]
  13. P. Li, X. Fu, Q. Liu, and M. Gong, “Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser,” J. Opt. Soc. Am. B 30(8), 2161–2167 (2013).
    [Crossref]
  14. P. Ferrara, M. Ciofini, L. Esposito, J. Hostaša, L. Labate, A. Lapucci, A. Pirri, G. Toci, M. Vannini, and L. A. Gizzi, “3-D numerical simulation of Yb:YAG active slabs with longitudinal doping gradient for thermal load effects assessment,” Opt. Express 22(5), 5375–5386 (2014).
    [Crossref] [PubMed]
  15. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [Crossref]
  16. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  17. D. L. Kim and B. T. Kim, “Fracture characteristics of ceramic Nd:YAG,” Opt. Express 22(9), 11331–11339 (2014).
    [Crossref] [PubMed]
  18. “Applied Optics Research,” www.aor.com
  19. Y. Tan and X. Li, “Numerical analysis of beam quality factor β on coherent combination of multiple laser beams,” Proc. SPIE 8551, 85511C (2012).
    [Crossref]
  20. G. Haag, M. Munz, and G. Marowsky, “Amplified spontaenous emission (ASE) in laser oscillators and amplifiers,” IEEE J. Quantum Electron. 19(6), 1149–1160 (1983).
    [Crossref]
  21. A. M. Hunter and R. O. Hunter, Jr., “Bidirectional amplification with nonsaturable absorption and amplified spontaneous emission,” IEEE J. Quantum Electron. 17(9), 1879–1887 (1981).
    [Crossref]

2014 (4)

2013 (1)

2012 (2)

2010 (1)

2006 (3)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

J. Wang, J. Min, and Y. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
[Crossref]

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

2005 (1)

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(64), 634–638 (2005).

2003 (1)

A. Minassian, B. Thompson, and M. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
[Crossref]

1983 (1)

G. Haag, M. Munz, and G. Marowsky, “Amplified spontaenous emission (ASE) in laser oscillators and amplifiers,” IEEE J. Quantum Electron. 19(6), 1149–1160 (1983).
[Crossref]

1981 (1)

A. M. Hunter and R. O. Hunter, Jr., “Bidirectional amplification with nonsaturable absorption and amplified spontaneous emission,” IEEE J. Quantum Electron. 17(9), 1879–1887 (1981).
[Crossref]

1964 (1)

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Blume, A. E.

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Ciofini, M.

Coffey, V.

V. Coffey, “High-energy lasers: new advances in defense applications,” Opt. Photonics News 25(10), 28–35 (2014).
[Crossref]

Damzen, M.

A. Minassian, B. Thompson, and M. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
[Crossref]

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Esposito, L.

Ferrara, P.

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Fu, X.

Fujita, H.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Fujita, M.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(64), 634–638 (2005).

Georges, P.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Giessen, H.

Gissibl, T.

Gizzi, L. A.

Gong, M.

Haag, G.

G. Haag, M. Munz, and G. Marowsky, “Amplified spontaenous emission (ASE) in laser oscillators and amplifiers,” IEEE J. Quantum Electron. 19(6), 1149–1160 (1983).
[Crossref]

Hostaša, J.

Hunter, A. M.

A. M. Hunter and R. O. Hunter, Jr., “Bidirectional amplification with nonsaturable absorption and amplified spontaneous emission,” IEEE J. Quantum Electron. 17(9), 1879–1887 (1981).
[Crossref]

Hunter, R. O.

A. M. Hunter and R. O. Hunter, Jr., “Bidirectional amplification with nonsaturable absorption and amplified spontaneous emission,” IEEE J. Quantum Electron. 17(9), 1879–1887 (1981).
[Crossref]

Izawa, Y.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(64), 634–638 (2005).

Jafari, A. K.

Kawanaka, J.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(64), 634–638 (2005).

Kawashima, T.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(64), 634–638 (2005).

Kedenburg, S.

Kim, B. T.

Kim, D. L.

Labate, L.

Lapucci, A.

Li, P.

Li, X.

Y. Tan and X. Li, “Numerical analysis of beam quality factor β on coherent combination of multiple laser beams,” Proc. SPIE 8551, 85511C (2012).
[Crossref]

Liu, Q.

Marowsky, G.

G. Haag, M. Munz, and G. Marowsky, “Amplified spontaenous emission (ASE) in laser oscillators and amplifiers,” IEEE J. Quantum Electron. 19(6), 1149–1160 (1983).
[Crossref]

Milani, M. R.

Min, J.

J. Wang, J. Min, and Y. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
[Crossref]

Minassian, A.

A. Minassian, B. Thompson, and M. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
[Crossref]

Munz, M.

G. Haag, M. Munz, and G. Marowsky, “Amplified spontaenous emission (ASE) in laser oscillators and amplifiers,” IEEE J. Quantum Electron. 19(6), 1149–1160 (1983).
[Crossref]

Nakatsuka, M.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Okada, H.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Pirri, A.

Sazegari, V.

Song, Y.

J. Wang, J. Min, and Y. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
[Crossref]

Tan, Y.

Y. Tan and X. Li, “Numerical analysis of beam quality factor β on coherent combination of multiple laser beams,” Proc. SPIE 8551, 85511C (2012).
[Crossref]

Thompson, B.

A. Minassian, B. Thompson, and M. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
[Crossref]

Tittel, K. F.

Toci, G.

Tokita, S.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(64), 634–638 (2005).

Vannini, M.

Vieweg, M.

Wang, J.

J. Wang, J. Min, and Y. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
[Crossref]

Yoshida, H.

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (2)

A. Minassian, B. Thompson, and M. Damzen, “Ultrahigh-efficiency TEM00 diode-side-pumped Nd:YVO4 laser,” Appl. Phys. B 76(4), 341–343 (2003).
[Crossref]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(64), 634–638 (2005).

Appl. Therm. Eng. (1)

J. Wang, J. Min, and Y. Song, “Forced convective cooling of a high-power solid-state laser slab,” Appl. Therm. Eng. 26(5-6), 549–558 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

G. Haag, M. Munz, and G. Marowsky, “Amplified spontaenous emission (ASE) in laser oscillators and amplifiers,” IEEE J. Quantum Electron. 19(6), 1149–1160 (1983).
[Crossref]

A. M. Hunter and R. O. Hunter, Jr., “Bidirectional amplification with nonsaturable absorption and amplified spontaneous emission,” IEEE J. Quantum Electron. 17(9), 1879–1887 (1981).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

H. Okada, H. Yoshida, H. Fujita, and M. Nakatsuka, “Liquid-cooled ceramic Nd:YAG split-disk amplifier for high-average-power laser,” Opt. Commun. 266(1), 274–279 (2006).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Opt. Photonics News (1)

V. Coffey, “High-energy lasers: new advances in defense applications,” Opt. Photonics News 25(10), 28–35 (2014).
[Crossref]

Proc. SPIE (1)

Y. Tan and X. Li, “Numerical analysis of beam quality factor β on coherent combination of multiple laser beams,” Proc. SPIE 8551, 85511C (2012).
[Crossref]

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Other (5)

“Applied Optics Research,” www.aor.com

“High Energy Liquid Laser Area Defense System,” http://en.wikipedia.org/wiki/High_Energy_Liquid_Laser_Area_Defense_System .

M. D. Perry, P. S. Banks, J. Zweiback, and R. W. Schleicher, “Laser containing a distributed gain medium,” U.S. Patent 7,366,211 (April 29, 2008).

A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® laser program” in Conference on Lasers and Electro-Optics (2010), paper JThH2.
[Crossref]

H. Okada, H. Yoshida, K. Sumimura, T. Sato, H. Fujita, and M. Nakatsuka, “Large-clear-aperture Nd:Cr:YAG split-disk laser amplifier,” in Conference on Lasers and Electro-Optics/Pacific Rim (2007), paper WP_015.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Configuration of liquid-convection-cooled large-aperture laser oscillator.
Fig. 2
Fig. 2 Simulated pump intensity distribution at the slab surface: (a) slab #1; (b) slab #4.
Fig. 3
Fig. 3 The three-dimensional simulated temperature distribution of the central slab.
Fig. 4
Fig. 4 Schematic of laser beam going through the temperature field of the slabs and liquid layers.
Fig. 5
Fig. 5 OPDt for undeformed model: (a) the outer slab; (b) the central slab; (c) the outer liquid layer; (d) the central liquid layer.
Fig. 6
Fig. 6 The OPDt for undeformed model: (a) sum of seven slabs; (b) whole gain module (seven slabs and eight liquid layers).
Fig. 7
Fig. 7 (a) ΔL1(x, y) of surface A; (b) ΔL(x, y) of surface B; (c) OPDd of slab #1.
Fig. 8
Fig. 8 Phase aberration: (a) single gain module; (b) double gain modules.
Fig. 9
Fig. 9 Modified configuration of multi-slab oscillator that has two same gain modules with opposite flow direction.
Fig. 10
Fig. 10 Phase aberration along the flow direction (single module and double modules).
Fig. 11
Fig. 11 Predicted output power vs. transmission of output coupler.
Fig. 12
Fig. 12 Comparison of predicted output power with and without the inclusion of ASE.

Tables (3)

Tables Icon

Table 1 Slab thickness, deposited heat power, and PV value of aberrations for the seven thin slabs.

Tables Icon

Table 2 The near-field profile and phase distribution of the case with both gain and phase aberration, with URM and VRM output coupler (cavity length of 3 m)

Tables Icon

Table 3 The near-field phase distribution and far-field intensity profile, with and without the correction by deformable mirror (for the 3-m-long cavity that has a HR convex mirror with the radius of curvature of 50 m, and a VRM output coupler with the 6th-order super-Gaussian reflectivity profile)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ρ t +div(ρu)=0,
(ρ u i ) t +div(ρ u i u)= p x i +div(μgrad u i ),
(ρT) t +div(ρTu)=div( k c p gradT),
Re= u 0 D h v
OPD(x,y)=OP D t +OP D d = L 0 ( n g + n f )dz + j [( n g n f )Δ L j ]
n g (T)=1.82+ dn dT (T T 0 )
OP D d (slab#1)=[ n g ( T 1 ) n f ( T 1 )]Δ L 1 +[ n g ( T 2 ) n f ( T 2 )]Δ L 2
L out = 1R Rr 1 8 A 1 ρ {[(1r)(1+ ρ 2 ) A 1 (1+r)(1 ρ 2 )]σ(0)2ρ(1r) A 2 }
A 1 =1+2Ac/ (1c) 2 A 2 =4A/(1c) ρ= R A 1
2 A 1 A 3 2 c 2 σ 2 (0) ln[ (1+ ρ 2 ) A 3 2ρcσ(0)+(1 ρ 2 ) A 3 2 c 2 σ 2 (0) 2ρ A 3 (1+ ρ 2 )cσ(0) ] =αL+ 1 2 ln( 1 R )
A= dΩ 4π τ u τ s Δ ν n Δ ν s
dΩ 4π = 1 2 ρ 0 (1+ ρ 0 1+ ρ 0 2 )
Δ ν n Δ ν s (1+lnG+ g 0 L ( g 0 /α) ) 1/2

Metrics