Abstract

A novel bandwidth-tunable notch filter is proposed based on the guided-mode resonance effect. The notch is created due to the superposition spectra response of two guided-mode resonant filters. The compact, bandwidth tuning capability is realized by taking advantage the effect of spectra-to-polarization sensitivity in one-dimensional classical guided-mode resonance filter, and using a liquid crystal polarization rotator for precise and simple polarization control. The operation principle and the design of the device are presented, and we demonstrate it experimentally. The central wavelength is fixed at 766.4 nm with a relatively symmetric profile. The full width at half maximum bandwidth could be tuned from 8.6 nm to 18.2 nm by controlling the applied voltage in electrically-driving polarization rotator.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid crystal polarization rotator

Linyong Qian, Dawei Zhang, Bo Dai, Yuanshen Huang, Chunxian Tao, Ruijin Hong, and Songlin Zhuang
Opt. Lett. 40(5) 713-716 (2015)

Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating

Chang-Hyun Park, Yeo-Taek Yoon, Vivek Raj Shrestha, Chul-Soon Park, Sang-Shin Lee, and Eun-Soo Kim
Opt. Express 21(23) 28783-28793 (2013)

Two-dimensional grating guided-mode resonance tunable filter

Wen-Kai Kuo and Che-Jung Hsu
Opt. Express 25(24) 29642-29649 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
    [Crossref]
  2. S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
    [Crossref]
  3. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
    [Crossref]
  4. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  5. D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt. 45(28), 7286–7293 (2006).
    [Crossref] [PubMed]
  6. F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nano-replica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
    [Crossref]
  7. M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
    [Crossref]
  8. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
    [Crossref]
  9. R. Magnusson, “The complete biosensor,” J. Biosensors and Bioelectronics 04(02), 1–2 (2013).
    [Crossref]
  10. M. L. Wu, C. L. Hsu, H. C. Lan, H. I. Huang, Y. C. Liu, Z. R. Tu, C. C. Lee, J. S. Lin, C. C. Su, and J. Y. Chang, “Authentication labels based on guided-mode resonant filters,” Opt. Lett. 32(12), 1614–1616 (2007).
    [Crossref] [PubMed]
  11. X. Fu, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing guided-mode resonance filter,” Opt. Lett. 34(2), 124–126 (2009).
    [Crossref] [PubMed]
  12. M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
    [Crossref] [PubMed]
  13. B. A. Belyaev, V. V. Tyurnev, and V. F. Shabanov, “Design of optical bandpass filters based on a two-material multilayer structure,” Opt. Lett. 39(12), 3512–3515 (2014).
    [Crossref] [PubMed]
  14. B. Dai, D. Wang, C. Tao, R. Hong, D. Zhang, S. Zhuang, and X. Wang, “Optical bandpass/notch filter with independent tuning of wavelength and bandwidth based on a blazed diffraction grating,” Opt. Express 22(17), 20284–20291 (2014).
    [Crossref] [PubMed]
  15. Q. Yu, Z. Pan, L.-S. Yan, and A. E. Willner, “Chromatic dispersion monitoring techniqueusing sideband optical filtering andclock phase-shift detection,” J. Lightwave Technol. 20(12), 2267–2271 (2002).
    [Crossref]
  16. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high finesse and 21.6-nm,” Opt. Lett. 22(16), 1244–1246 (1997).
    [Crossref] [PubMed]
  17. L. Y. Qian, D. W. Zhang, B. Dai, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid rotator,” Opt. Lett. 5(40), 713–716 (2015).
    [Crossref] [PubMed]
  18. T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, “Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence,” Opt. Lett. 36(13), 2411–2413 (2011).
    [Crossref] [PubMed]
  19. M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express 20(15), 16974–16980 (2012).
    [Crossref]
  20. Z. Zhuang, Y. Kim, and J. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
    [Crossref]
  21. Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Tunable intensity of the spectral reflectance of a guided-mode resonancefilter with dual channels,” Opt. Laser Technol. 43(7), 1091–1095 (2011).
    [Crossref]
  22. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A 17(7), 1221–1230 (2000).
    [Crossref] [PubMed]

2015 (1)

L. Y. Qian, D. W. Zhang, B. Dai, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid rotator,” Opt. Lett. 5(40), 713–716 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

R. Magnusson, “The complete biosensor,” J. Biosensors and Bioelectronics 04(02), 1–2 (2013).
[Crossref]

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

2012 (1)

2011 (2)

Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Tunable intensity of the spectral reflectance of a guided-mode resonancefilter with dual channels,” Opt. Laser Technol. 43(7), 1091–1095 (2011).
[Crossref]

T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, “Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence,” Opt. Lett. 36(13), 2411–2413 (2011).
[Crossref] [PubMed]

2010 (1)

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

2009 (1)

2008 (1)

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

2007 (2)

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nano-replica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

M. L. Wu, C. L. Hsu, H. C. Lan, H. I. Huang, Y. C. Liu, Z. R. Tu, C. C. Lee, J. S. Lin, C. C. Su, and J. Y. Chang, “Authentication labels based on guided-mode resonant filters,” Opt. Lett. 32(12), 1614–1616 (2007).
[Crossref] [PubMed]

2006 (1)

2002 (1)

2000 (2)

1997 (1)

1993 (1)

1990 (1)

Alasaarela, T.

Bagby, J. S.

Bai, B.

Belyaev, B. A.

Bendickson, J. M.

Block, I. D.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

Brundrett, D. L.

Chang, J. Y.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

M. L. Wu, C. L. Hsu, H. C. Lan, H. I. Huang, Y. C. Liu, Z. R. Tu, C. C. Lee, J. S. Lin, C. C. Su, and J. Y. Chang, “Authentication labels based on guided-mode resonant filters,” Opt. Lett. 32(12), 1614–1616 (2007).
[Crossref] [PubMed]

Chen, W. Y.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Cunningham, B. T.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nano-replica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt. 45(28), 7286–7293 (2006).
[Crossref] [PubMed]

Dai, B.

L. Y. Qian, D. W. Zhang, B. Dai, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid rotator,” Opt. Lett. 5(40), 713–716 (2015).
[Crossref] [PubMed]

B. Dai, D. Wang, C. Tao, R. Hong, D. Zhang, S. Zhuang, and X. Wang, “Optical bandpass/notch filter with independent tuning of wavelength and bandwidth based on a blazed diffraction grating,” Opt. Express 22(17), 20284–20291 (2014).
[Crossref] [PubMed]

Ding, T. J.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Ding, Y.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Dobbs, D. W.

Fan, Z.

Fu, X.

Ganesh, N.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

Gaylord, T. K.

Glytsis, E. N.

Hagness, S. C.

Ho, S. T.

Hong, R.

Hong, R. J.

L. Y. Qian, D. W. Zhang, B. Dai, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid rotator,” Opt. Lett. 5(40), 713–716 (2015).
[Crossref] [PubMed]

Honkanen, S.

Hsu, C. L.

Huang, H. I.

Huang, L.

Huang, Y. S.

L. Y. Qian, D. W. Zhang, B. Dai, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid rotator,” Opt. Lett. 5(40), 713–716 (2015).
[Crossref] [PubMed]

Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Tunable intensity of the spectral reflectance of a guided-mode resonancefilter with dual channels,” Opt. Laser Technol. 43(7), 1091–1095 (2011).
[Crossref]

Khaleque, T.

Kim, S.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Kim, Y.

Z. Zhuang, Y. Kim, and J. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Kuittinen, M.

Lan, H. C.

Lee, C. C.

Lee, K. J.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Lin, J. S.

Lin, S. F.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Liu, Y. C.

Magnusson, R.

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

R. Magnusson, “The complete biosensor,” J. Biosensors and Bioelectronics 04(02), 1–2 (2013).
[Crossref]

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
[Crossref]

Moharam, M. G.

Ni, Z. J.

Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Tunable intensity of the spectral reflectance of a guided-mode resonancefilter with dual channels,” Opt. Laser Technol. 43(7), 1091–1095 (2011).
[Crossref]

Pan, Z.

Patel, J.

Z. Zhuang, Y. Kim, and J. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Priimagi, A.

Qian, L. Y.

L. Y. Qian, D. W. Zhang, B. Dai, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid rotator,” Opt. Lett. 5(40), 713–716 (2015).
[Crossref] [PubMed]

Rafizadeh, D.

Saleem, M. R.

Shabanov, V. F.

Shao, J.

Shokooh-Saremi, M.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Song, S. H.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Stair, K. A.

Stenberg, P.

Su, C. C.

Taflove, A.

Tao, C.

Tao, C. X.

L. Y. Qian, D. W. Zhang, B. Dai, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid rotator,” Opt. Lett. 5(40), 713–716 (2015).
[Crossref] [PubMed]

Tervonen, A.

Tiberio, R. C.

Tsai, Y. L.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Tu, Z. R.

Turunen, J.

Tyurnev, V. V.

Uddin, M. J.

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

Ussery, D.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Wang, C. M.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Wang, D.

Wang, Q.

Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Tunable intensity of the spectral reflectance of a guided-mode resonancefilter with dual channels,” Opt. Laser Technol. 43(7), 1091–1095 (2011).
[Crossref]

Wang, S. S.

Wang, X.

Wawro, D.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Willner, A. E.

Wu, M. L.

Yan, L.-S.

Yang, F.

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nano-replica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

Yang, T. H.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Yeh, S. F.

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

Yen, G.

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nano-replica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

Yi, K.

Yu, Q.

Zhang, D.

Zhang, D. W.

L. Y. Qian, D. W. Zhang, B. Dai, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid rotator,” Opt. Lett. 5(40), 713–716 (2015).
[Crossref] [PubMed]

Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Tunable intensity of the spectral reflectance of a guided-mode resonancefilter with dual channels,” Opt. Laser Technol. 43(7), 1091–1095 (2011).
[Crossref]

Zhang, J. P.

Zhang, W.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

Zheng, D.

Zhuang, S.

Zhuang, S. L.

L. Y. Qian, D. W. Zhang, B. Dai, Y. S. Huang, C. X. Tao, R. J. Hong, and S. L. Zhuang, “Electrically driving bandwidth tunable guided-mode resonance filter based on a twisted nematic liquid rotator,” Opt. Lett. 5(40), 713–716 (2015).
[Crossref] [PubMed]

Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Tunable intensity of the spectral reflectance of a guided-mode resonancefilter with dual channels,” Opt. Laser Technol. 43(7), 1091–1095 (2011).
[Crossref]

Zhuang, Z.

Z. Zhuang, Y. Kim, and J. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

Zimmerman, S.

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nano-replica molding,” Appl. Phys. Lett. 90(26), 261109 (2007).
[Crossref]

Z. Zhuang, Y. Kim, and J. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76(26), 3995–3997 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

J. Biosensors and Bioelectronics (1)

R. Magnusson, “The complete biosensor,” J. Biosensors and Bioelectronics 04(02), 1–2 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Opt. Express (3)

Opt. Laser Technol. (1)

Q. Wang, D. W. Zhang, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Tunable intensity of the spectral reflectance of a guided-mode resonancefilter with dual channels,” Opt. Laser Technol. 43(7), 1091–1095 (2011).
[Crossref]

Opt. Lett. (6)

Proc. SPIE (1)

R. Magnusson, D. Wawro, S. Zimmerman, Y. Ding, M. Shokooh-Saremi, K. J. Lee, D. Ussery, S. Kim, and S. H. Song, “Leaky-mode resonance photonics: Technology for biosensors, optical components, MEMS, and plasmonics,” Proc. SPIE 7604, 76040M (2010).
[Crossref]

Sens. Actuators B Chem. (2)

S. F. Lin, C. M. Wang, Y. L. Tsai, T. J. Ding, T. H. Yang, W. Y. Chen, S. F. Yeh, and J. Y. Chang, “A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors,” Sens. Actuators B Chem. 176, 1197–1203 (2013).
[Crossref]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Configuration of the designed bandwidth tunable filter and basic 1D GMR structure showing parameters. The grating layer is a rectangular refractive index profile with dg = grating depth, dh = thickness of waveguide layer, f = fill factor, Λ = grating period.
Fig. 2
Fig. 2 Operation principle of the proposed device.
Fig. 3
Fig. 3 (a) Simulated spectral response of the GMRF1 for TM polarization. (b), (c) Simulated spectral responses of the GMRF2 based on different incidence polarizations. (d) Simulated spectral response of the design device.
Fig. 4
Fig. 4 Simulated reflectance spectra for the normalized transmitted intensities as a function of wavelength.
Fig. 5
Fig. 5 Measured AFM images of the fabricated GMR filters.
Fig. 6
Fig. 6 (a) Measured spectral of the GMRF1 under TM polarization incidence. (b) Measured spectrum of the GMRF2 under TE polarization incidence (black solid line) and TM polarization incidence (red solid line).
Fig. 7
Fig. 7 Measured spectra response of the fabricated device which integrated with an electrically driving polarization rotator.
Fig. 8
Fig. 8 Measured bandwidths of the device according to the applied voltage.

Tables (1)

Tables Icon

Table 1 Structure parameters and bandwidth change (notch at 770 nm, G1 = GMRF1, G2 = GMRF2)

Metrics