Abstract

A high energy all-fiber format nanosecond thulium-doped fiber laser at 2050 nm with a master oscillator power amplifier (MOPA) configuration is presented in this paper. The seed oscillator is a linearly polarized gain-switched fiber laser pumped by a 1550 nm fiber laser. The output pulse of the seed has a polarization extinction ratio (PER) better than 16 dB with a maximal output power of 470 mW. After two-stage double- cladding fiber amplifiers, the average power at 40 kHz was boosted up to 40.5 W. The output pulse has a maximum pulse energy of 1 mJ with a pulse width of 100 ns, which corresponds to a peak power of 10 kW. To the best of our knowledge, it is the highest single pulse energy ever reported for a nanosecond thulium-doped all-fiber MOPA system at 2050 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2  μm with mJ-level pulse energy

Xiong Wang, Xiaoxi Jin, Pu Zhou, Xiaolin Wang, Hu Xiao, and Zejin Liu
Appl. Opt. 55(8) 1941-1945 (2016)

110  W all-fiber picosecond master oscillator power amplifier based on large-core-diameter ytterbium-doped fiber

Zhenhua Yu, Wei Shi, Xinzheng Dong, Jinhui Li, Yizhu Zhao, and Huixian Liu
Appl. Opt. 55(15) 4119-4122 (2016)

240  W high-average-power square-shaped nanosecond all-fiber-integrated laser with near diffraction-limited beam quality

Hailong Yu, Rumao Tao, Xiaolin Wang, Pu Zhou, and Jinbao Chen
Appl. Opt. 53(28) 6409-6413 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [Crossref]
  2. K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
    [Crossref] [PubMed]
  3. Q. Wang, J. Geng, and S. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
    [Crossref]
  4. J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4, and H2O monitoring in the 2 μm range,” Opt. Lett. 39(23), 6719–6722 (2014).
    [Crossref] [PubMed]
  5. D. Theisen-Kunde, V. Ott, R. Brinkmann, and R. Keller, “Hemostatic properties of a new cw 2 μm laser scalpel for laparoscopic surgery,” in European Conference on Biomedical Optics 2005, (International Society for Optics and Photonics, 2005), pp. 58630G–58635G.
    [Crossref]
  6. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
    [Crossref] [PubMed]
  7. N. Simakov, Z. Li, S.-U. Alam, P. C. Shardlow, J. M. O. Daniel, D. Jain, J. K. Sahu, A. Hemming, A. Clarkson, and D. J. Richardson, “Holmium Doped Fiber Amplifier for Optical Communications at 2.05 - 2.13 µm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), Tu2C.6.
  8. M. Zhang, E. J. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
    [Crossref] [PubMed]
  9. M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, C. Jeon, L. Shah, and M. Richardson, “High peak-power mid-infrared ZnGeP2 optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system,” Opt. Lett. 39(5), 1212–1215 (2014).
    [Crossref] [PubMed]
  10. J. Liu, J. Xu, K. Liu, F. Tan, and P. Wang, “High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier,” Opt. Lett. 38(20), 4150–4153 (2013).
    [Crossref] [PubMed]
  11. C. Gaida, M. Gebhardt, P. Kadwani, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Amplification of ns pulses beyond 1 MW peak power in Tm3+doped photonic crystal fiber rod,” in OSA Technical Digest (online) (Optical Society of America, 2013), CW1M.2.
    [Crossref]
  12. M. Gorjan, T. North, and M. Rochette, “Model of the amplified spontaneous emission generation in thulium-doped silica fibers,” J. Opt. Soc. Am. B 29(10), 2886–2891 (2012).
    [Crossref]
  13. L. Shah, T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, and M. Richardson, “High Power Thulium Fiber Lasers,” in International Symposium on High Power Laser Ablation 2010, AIP Conference Proceedings (Amer Inst Physics, 2010), 852–860.
  14. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-µm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-µm Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007).
    [Crossref] [PubMed]
  15. N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, 82373K (2012).
    [Crossref]
  16. M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, L. Shah, and M. Richardson, “Nanosecond Tm:fiber MOPA System for High Peak Power Mid-IR Generation in a ZGP OPO,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), MW3B.2.
    [Crossref]
  17. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
    [Crossref] [PubMed]
  18. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  19. E. Lucas, L. Lombard, Y. Jaouën, S. Bordais, and G. Canat, “1 kW peak power, 110 ns single-frequency thulium doped fiber amplifier at 2050 nm,” Appl. Opt. 53(20), 4413–4419 (2014).
    [Crossref] [PubMed]
  20. N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
    [Crossref] [PubMed]
  21. P. G. Wilcox, W. E. Torruellas, M. L. Dennis, J. W. Warren, G. P. Frith, T. S. McComb, and B. N. Samson, “Comprehensive model of double cladding Thulium-doped fibers pumped at 795 nm,” in SPIE Photonics West, (San Francisco, 2009).
  22. K. Yin, W. Yang, B. Zhang, S. Zeng, and J. Hou, “Temporal characteristics of gain-switched thulium-doped fiber laser near threshold,” J. Opt. Soc. Am. B 30(11), 2864–2868 (2013).
    [Crossref]
  23. G. P. Agrawal, Nonlinear fiber optics, Fifth ed. (Academic, 2013).
  24. J. Swiderski and M. Michalska, “Generation of self-mode-locked resembling pulses in a fast gain-switched thulium-doped fiber laser,” Opt. Lett. 38(10), 1624–1626 (2013).
    [Crossref] [PubMed]
  25. L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
    [Crossref]

2014 (5)

2013 (5)

2012 (3)

2011 (1)

2009 (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

2007 (1)

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Alam, S. U.

Armstrong, D.

Barrientos Barria, J.

Bennetts, S.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, 82373K (2012).
[Crossref]

N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
[Crossref] [PubMed]

Bonaccorso, F.

Bordais, S.

Bresson, A.

Byer, R. L.

Cadiou, E.

Canat, G.

Carmody, N.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, 82373K (2012).
[Crossref]

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Chapman, B. H.

Daniel, J. M. O.

Davidson, A.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, 82373K (2012).
[Crossref]

Davies, P.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, 82373K (2012).
[Crossref]

Dergachev, A.

Dherbecourt, J. B.

Dianov, E. M.

Drake, T.

Dubois, M.

Fermann, M.

Ferrari, A. C.

Flahaut, E.

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Gaida, C.

Gebhardt, M.

Gehlich, N.

Geng, J.

Q. Wang, J. Geng, and S. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
[Crossref]

Godard, A.

Gorjan, M.

Hartl, I.

Hasan, T.

Haub, J.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, 82373K (2012).
[Crossref]

N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
[Crossref] [PubMed]

Heidt, A. M.

Hemming, A.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, 82373K (2012).
[Crossref]

N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
[Crossref] [PubMed]

Hou, J.

Hughes, M.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, 82373K (2012).
[Crossref]

Jaouën, Y.

Jeon, C.

Jiang, J.

Jiang, S.

Q. Wang, J. Geng, and S. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
[Crossref]

Jiang, Z.

Jung, Y.

Kadwani, P.

Kelleher, E. J.

Lefebvre, M.

Leindecker, N.

Li, L.

Li, Z.

Liu, J.

Liu, K.

Lombard, L.

Lucas, E.

Mammez, D.

Marandi, A.

Mashinsky, V. M.

Medvedkov, O. I.

Melkonian, J. M.

Michalska, M.

Milana, S.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

North, T.

Pelon, J.

Popa, D.

Popov, S. V.

Raybaut, M.

Richardson, D. J.

Richardson, M.

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Rochette, M.

Runcorn, T. H.

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Schmid, T.

Schunemann, P. G.

Shah, L.

Simakov, N.

Sincore, A.

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Smith, A.

Sun, Z.

Swiderski, J.

Tan, F.

Taylor, J. R.

Vodopyanov, K. L.

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Wang, P.

Wang, Q.

Q. Wang, J. Geng, and S. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
[Crossref]

Xu, J.

Xue, G.

Yang, W.

Yin, K.

Zeng, S.

Zhang, B.

Zhang, M.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Eng. (1)

Q. Wang, J. Geng, and S. Jiang, “2-μm fiber laser sources for sensing,” Opt. Eng. 53(6), 061609 (2014).
[Crossref]

Opt. Express (6)

M. Zhang, E. J. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
[Crossref] [PubMed]

A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-µm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-µm Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007).
[Crossref] [PubMed]

N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19(16), 14949–14954 (2011).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 - 2050 nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE 8237, 82373K (2012).
[Crossref]

Other (8)

M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, L. Shah, and M. Richardson, “Nanosecond Tm:fiber MOPA System for High Peak Power Mid-IR Generation in a ZGP OPO,” in Advanced Solid-State Lasers Congress, OSA Technical Digest (online) (Optical Society of America, 2013), MW3B.2.
[Crossref]

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

P. G. Wilcox, W. E. Torruellas, M. L. Dennis, J. W. Warren, G. P. Frith, T. S. McComb, and B. N. Samson, “Comprehensive model of double cladding Thulium-doped fibers pumped at 795 nm,” in SPIE Photonics West, (San Francisco, 2009).

G. P. Agrawal, Nonlinear fiber optics, Fifth ed. (Academic, 2013).

D. Theisen-Kunde, V. Ott, R. Brinkmann, and R. Keller, “Hemostatic properties of a new cw 2 μm laser scalpel for laparoscopic surgery,” in European Conference on Biomedical Optics 2005, (International Society for Optics and Photonics, 2005), pp. 58630G–58635G.
[Crossref]

N. Simakov, Z. Li, S.-U. Alam, P. C. Shardlow, J. M. O. Daniel, D. Jain, J. K. Sahu, A. Hemming, A. Clarkson, and D. J. Richardson, “Holmium Doped Fiber Amplifier for Optical Communications at 2.05 - 2.13 µm,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), Tu2C.6.

C. Gaida, M. Gebhardt, P. Kadwani, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Amplification of ns pulses beyond 1 MW peak power in Tm3+doped photonic crystal fiber rod,” in OSA Technical Digest (online) (Optical Society of America, 2013), CW1M.2.
[Crossref]

L. Shah, T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, and M. Richardson, “High Power Thulium Fiber Lasers,” in International Symposium on High Power Laser Ablation 2010, AIP Conference Proceedings (Amer Inst Physics, 2010), 852–860.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic diagram of the thulium-doped MOPA system (HR-FBG: high reflectivity fiber Bragg grating, OC-FBG: output coupler fiber Bragg grating).
Fig. 2
Fig. 2 (a) The output pulse train of the seed oscillator; (b) the shape of the single pulse.
Fig. 3
Fig. 3 The signal pulse evolution in the seed oscillator with the growth of the average output power.
Fig. 4
Fig. 4 (a) The width of the output pulse versus the pump power pulse energy; (b) the energy of the output pulse versus the pump power pulse energy.
Fig. 5
Fig. 5 The output spectrum of the first stage amplifier.
Fig. 6
Fig. 6 (a) the output spectrum of the main amplifier at different output powers; (b) The output spectrum of the main amplifier at 40.5 W with linear scale; (c) the output pulse shape with the pulse energy exceeding 1 mJ; (d) the average output power versus the pump power.
Fig. 7
Fig. 7 Pulse shape detected by the fast detector (a) The seed pulse; (b) the amplified pulse shape.

Metrics