Abstract

Highly-efficient high-power fiber lasers operating at wavelength below 1020nm are critical for tandem-pumping in >10kW fiber lasers to provide high pump brightness and low thermal loading. Using an ytterbium-doped-phosphosilicate double-clad leakage-channel fiber with ~50µm core and ~420µm cladding, we have achieved ~70% optical-to-optical efficiency at 1018nm. The much larger cladding than those in previous reports demonstrates the much lower required pump brightness, a key for efficient kW operation. The demonstrated 1018nm fiber laser has ASE suppression of ~41dB. This is higher than previous reports and further demonstrates the advantages of the fiber used. Limiting factors to efficiency are also systematically studied.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency fiber laser at 1018 nm using Yb-doped phosphosilicate fiber

Jianhua Wang, Gui Chen, Lei Zhang, Jinmeng Hu, Jinyan Li, Bing He, Jinbao Chen, Xijia Gu, Jun Zhou, and Yan Feng
Appl. Opt. 51(29) 7130-7133 (2012)

High-power 1018  nm ytterbium-doped fiber laser and its application in tandem pump

Hu Xiao, Jinyong Leng, Hanwei Zhang, Liangjin Huang, Jiangming Xu, and Pu Zhou
Appl. Opt. 54(27) 8166-8169 (2015)

1018  nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915  nm with output power above 100  W

Yakup Midilli, O. Benjamin Efunbajo, Bartu şimşek, and Bülend Ortaç
Appl. Opt. 56(25) 7225-7229 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Tünnermann, T. Schreiber, and J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt. 49(25), F71–F78 (2010).
    [Crossref] [PubMed]
  2. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref] [PubMed]
  3. G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
    [Crossref] [PubMed]
  4. F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, and L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013).
    [PubMed]
  5. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003).
    [Crossref] [PubMed]
  6. R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz, “A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm,” Opt. Express 21(19), 22693–22698 (2013).
    [Crossref] [PubMed]
  7. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  8. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  9. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref] [PubMed]
  10. V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” presented at 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, 2010.
  11. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett. 23(5), 355–357 (1998).
    [Crossref] [PubMed]
  12. R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21(11), 13818–13823 (2013).
    [Crossref] [PubMed]
  13. H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9(10), 748–753 (2012).
    [Crossref]
  14. H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
    [Crossref]
  15. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
    [Crossref] [PubMed]
  16. A. V. Kir’yanov, Y. O. Barmenkov, I. L. Martinez, A. S. Kurkov, and E. M. Dianov, “Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ=980 nm with a regard to the Ytterbium ion-pairs’ effect,” Opt. Express 14(9), 3981–3992 (2006).
    [Crossref] [PubMed]

2014 (1)

2013 (6)

2012 (1)

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9(10), 748–753 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

2006 (1)

2003 (1)

1998 (1)

Bachor, P.

Barmenkov, Y. O.

Broeng, J.

Cormier, E.

Dianov, E. M.

Diehl, T.

Dong, L.

Dunn, C.

Eidam, T.

Foy, P.

Fu, L.

Gu, G.

Guo, S. F.

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9(10), 748–753 (2012).
[Crossref]

Hanna, D. C.

Hawkins, T.

Hawkins, T. W.

Iliew, R.

Jakobsen, C.

Jansen, F.

Jauregui, C.

Jones, M.

Kalichevsky-Dong, M. T.

Kir’yanov, A. V.

Koglbauer, A.

Kolbe, D.

Kong, F.

Kurkov, A. S.

Lederer, F.

Lhermite, J.

Limpert, J.

Liu, Z. J.

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

Martinez, I. L.

McKay, H. A.

Minelly, J. D.

Nilsson, J.

Nolte, S.

Otto, H. J.

Parsons, J.

Paschotta, R.

Peng, X.

Petersson, A.

Royon, R.

Saitoh, K.

Samson, B.

Sarger, L.

Schmidt, O.

Schreiber, T.

Smith, A. V.

Smith, J. J.

Stappel, M.

Steinborn, R.

Stutzki, F.

Suzuki, S.

Tropper, A. C.

Tunnermann, T.

Tünnermann, A.

Vienne, G.

Walz, J.

Wang, X. L.

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9(10), 748–753 (2012).
[Crossref]

Wei, K.

Wirth, C.

Xiao, H.

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9(10), 748–753 (2012).
[Crossref]

Xu, X. J.

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9(10), 748–753 (2012).
[Crossref]

Zellmer, H.

Zhou, P.

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9(10), 748–753 (2012).
[Crossref]

Appl. Opt. (1)

Laser Phys. Lett. (2)

H. Xiao, P. Zhou, X. L. Wang, S. F. Guo, and X. J. Xu, “High power 1018 nm monolithic Yb3+-doped fiber laser and amplifier,” Laser Phys. Lett. 9(10), 748–753 (2012).
[Crossref]

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. J. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

Opt. Express (11)

S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
[Crossref] [PubMed]

A. V. Kir’yanov, Y. O. Barmenkov, I. L. Martinez, A. S. Kurkov, and E. M. Dianov, “Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ=980 nm with a regard to the Ytterbium ion-pairs’ effect,” Opt. Express 14(9), 3981–3992 (2006).
[Crossref] [PubMed]

R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21(11), 13818–13823 (2013).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, P. Foy, K. Wei, B. Samson, and L. Dong, “Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers,” Opt. Express 21(20), 24039–24048 (2013).
[Crossref] [PubMed]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Wei, B. Samson, and L. Dong, “Flat-top mode from a 50 µm-core Yb-doped leakage channel fiber,” Opt. Express 21(26), 32371–32376 (2013).
[PubMed]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003).
[Crossref] [PubMed]

R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz, “A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm,” Opt. Express 21(19), 22693–22698 (2013).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (1)

V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, “10 kW single-mode fiber laser,” presented at 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, June 28-July 1, 2010.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic Experimental Setup.
Fig. 2
Fig. 2 Transmission spectrum of a 1018nm FBG.
Fig. 3
Fig. 3 (a) Optical spectra at the laser output, wavelengths ranges from 1008nm to 1020nm. (b) Output powers versus the launched pump powers at various lasing wavelengths.
Fig. 4
Fig. 4 Launched efficiency (black circle) and fiber length (red triangle) as a function of wavelength.
Fig. 5
Fig. 5 Slope efficiency versus the inverse of the fiber length.
Fig. 6
Fig. 6 Deviation of measured absorbed efficiency from quantum efficiency as a function of average inversion. Solid red line is the quadratic fit for the measured data.
Fig. 7
Fig. 7 Net gain in the phosphosilicate fiber.

Metrics