Abstract

We demonstrate a 32 × 32 path-independent-insertion-loss optical path switch that integrates 1024 thermooptic Mach-Zehnder switches and 961 intersections on a small, 11 × 25 mm2 die. The switch is fabricated on a 300-mm-diameter silicon-on-insulator wafer by a complementary metal-oxide semiconductor-compatible process with advanced ArF immersion lithography. For reliable electrical packaging, the switch chip is flip-chip bonded to a ceramic interposer that arranges the electrodes in a 0.5-mm pitch land grid array. The on-chip loss is measured to be 15.8 ± 1.0 dB, and successful switching is demonstrated for digital-coherent 43-Gb/s QPSK signals. The total crosstalk of the switch is estimated to be less than −20 dB at the center wavelength of 1545 nm. The bandwidth narrowing caused by dimensional errors that arise during fabrication is discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch

Keijiro Suzuki, Ken Tanizawa, Takashi Matsukawa, Guangwei Cong, Sang-Hun Kim, Satoshi Suda, Morifumi Ohno, Tadashi Chiba, Hirofumi Tadokoro, Masashi Yanagihara, Yasushi Igarashi, Meishoku Masahara, Shu Namiki, and Hitoshi Kawashima
Opt. Express 22(4) 3887-3894 (2014)

Non-duplicate polarization-diversity 8 × 8 Si-wire PILOSS switch integrated with polarization splitter-rotators

Ken Tanizawa, Keijiro Suzuki, Kazuhiro Ikeda, Shu Namiki, and Hitoshi Kawashima
Opt. Express 25(10) 10885-10892 (2017)

Ultralow-crosstalk, strictly non-blocking microring-based optical switch

Qixiang Cheng, Liang Yuan Dai, Nathan C. Abrams, Yu-Han Hung, Padraic E. Morrissey, Madeleine Glick, Peter O’Brien, and Keren Bergman
Photon. Res. 7(2) 155-161 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Kurumida, K. Ishii, A. Takefusa, Y. Tanimura, S. Yanagimachi, H. Takeshita, A. Tajima, K. Fukuchi, H. Honma, W. Odashima, H. Onaka, K. Tanizawa, K. Suzuki, S. Suda, K. Ikeda, H. Kawashima, H. Uetsuka, H. Matsuura, H. Kuwatsuka, K. Sato, T. Kudoh, and S. Namiki, “First demonstration of ultra-low-energy hierarchical multi-granular optical path network dynamically controlled through NSI-CS for video related applications,” in 40th European Conference on Optical Fiber Communications (ECOC 2014), paper PD.1.3, 2014.
    [Crossref]
  2. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuM2.
    [Crossref]
  3. L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [Crossref] [PubMed]
  4. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
    [Crossref] [PubMed]
  5. M.-J. Kwack, T. Tanemura, A. Higo, and Y. Nakano, “Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection,” Opt. Express 20(27), 28734–28741 (2012).
    [Crossref] [PubMed]
  6. T. J. Seok, N. Quack, S. Han, and M. C. Wu, “50x50 Digital Silicon Photonic Switches with MEMS-Actuated Adiabatic Couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2B.4.
    [Crossref]
  7. T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightwave Technol. 17(7), 1192–1199 (1999).
    [Crossref]
  8. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 Strictly Non-Blocking Si-Wire Optical Switch on Ultra-Small Die of 11×25 mm2,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2B.5.
  9. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in 32nd European Conference and Exhibition on Optical Communication (ECOC 2006), paper OThV4.
    [Crossref]
  10. S.-H. Jeong, D. Shimura, T. Simoyama, M. Seki, N. Yokoyama, M. Ohtsuka, K. Koshino, T. Horikawa, Y. Tanaka, and K. Morito, “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Express 21(25), 30163–30174 (2013).
    [Crossref] [PubMed]
  11. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
    [Crossref] [PubMed]
  12. T. Watanabe, S. Sohma, T. Goh, T. Shibata, and H. Takahashi, “Compact 8 x 8 Silica-based PLC Switch with Compressed Arrangement,” in 31st European Conference and Exhibition on Optical Communication (ECOC 2005), Paper Th 3.6.3.
    [Crossref]
  13. K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
    [Crossref]

2014 (1)

2013 (1)

2012 (2)

2010 (1)

1999 (1)

1996 (1)

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Chen, L.

Chen, Y. K.

Chiba, T.

Cong, G.

Goh, T.

Hasama, T.

Hattori, K.

Hida, Y.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Higo, A.

Himeno, A.

Horikawa, T.

Igarashi, Y.

Ishikawa, H.

Jeong, S.-H.

Jinguji, K.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Kawachi, M.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Kawashima, H.

Kim, S.-H.

Kintaka, K.

Kitoh, T.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Koshino, K.

Kwack, M.-J.

Masahara, M.

Matsukawa, T.

Morito, K.

Nakano, Y.

Namiki, S.

Ohno, M.

Ohtsuka, M.

Okuno, M.

Seki, M.

Shimura, D.

Shoji, Y.

Simoyama, T.

Suda, S.

Suzuki, K.

Tadokoro, H.

Takahashi, H.

Takato, N.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Tanaka, Y.

Tanemura, T.

Tanizawa, K.

Yanagihara, M.

Yokoyama, N.

J. Lightwave Technol. (2)

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightwave Technol. 17(7), 1192–1199 (1999).
[Crossref]

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol. 14(10), 2301–2310 (1996).
[Crossref]

Opt. Express (5)

Other (6)

T. J. Seok, N. Quack, S. Han, and M. C. Wu, “50x50 Digital Silicon Photonic Switches with MEMS-Actuated Adiabatic Couplers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2B.4.
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 Strictly Non-Blocking Si-Wire Optical Switch on Ultra-Small Die of 11×25 mm2,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper M2B.5.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in 32nd European Conference and Exhibition on Optical Communication (ECOC 2006), paper OThV4.
[Crossref]

J. Kurumida, K. Ishii, A. Takefusa, Y. Tanimura, S. Yanagimachi, H. Takeshita, A. Tajima, K. Fukuchi, H. Honma, W. Odashima, H. Onaka, K. Tanizawa, K. Suzuki, S. Suda, K. Ikeda, H. Kawashima, H. Uetsuka, H. Matsuura, H. Kuwatsuka, K. Sato, T. Kudoh, and S. Namiki, “First demonstration of ultra-low-energy hierarchical multi-granular optical path network dynamically controlled through NSI-CS for video related applications,” in 40th European Conference on Optical Fiber Communications (ECOC 2014), paper PD.1.3, 2014.
[Crossref]

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuM2.
[Crossref]

T. Watanabe, S. Sohma, T. Goh, T. Shibata, and H. Takahashi, “Compact 8 x 8 Silica-based PLC Switch with Compressed Arrangement,” in 31st European Conference and Exhibition on Optical Communication (ECOC 2005), Paper Th 3.6.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Microscope photographs of the 32 × 32 switch chip: (a) overview image and (b) magnified image.
Fig. 2
Fig. 2 32 × 32 Si-wire optical switch with ceramic LGA interposer: (a) photograph of the switch after flip-chip bonding, (b) schematic side view, and (c) photograph of the switch on LGA socket (without upper clamp).
Fig. 3
Fig. 3 Histogram of the heater resistances on the LGA pads after flip-chip bonding.
Fig. 4
Fig. 4 Transmission spectra of intended output and leakage for the MZ element switch in the (a) bar state and (b) cross state.
Fig. 5
Fig. 5 Response time of the MZ element switch.
Fig. 6
Fig. 6 Transmission characteristics of the six sampled optical paths 1-12, 1-20, 1-32, 32-1, 32-13, and 32-19: (a) Path on the PILOSS switch matrix and (b) on-chip loss. The inset in (b) shows the spectral passband of the path 32-1.
Fig. 7
Fig. 7 Transmission of 43-Gb/s QPSK signals in the sampled six optical paths of 1-10, 1-19, 1-29, 32-1, 32-13, and 32-27: (a) EVM and (b) constellation diagrams at OSNR of 16.7 dB.
Fig. 8
Fig. 8 Estimation of the variation in the center wavelength of the MZ element switch: (a) schematic of the cross-section of the DC and (b) standard deviation of the center wavelength estimated from the dimensional error in waveguide width.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ c =4× L 3dB × Δ neffTM (W, λ c )

Metrics