Abstract

An all-fiber optical heterodyne detection configuration was proposed based on an all-fiber acousto-optic structure, which acted as both frequency shifter and coupler at the same time. The vibration waveform within a frequency range between 1 Hz to 200 kHz of a piezoelectric mirror was measured using this optical heterodyne detection system. The minimal measurable vibration amplitude and resolution are around 6 pm and 1 pm in the region of tens to hundreds of kilohertz, respectively. The configuration has advantages of compact size, high accuracy and non-contact measurement. Moreover, it is of a dynamically adjustable signal-to-noise ratio to adapt different surface with different reflections in the measurement, which will improve the usage efficiency of the light power.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber frequency shifter consisting of a fiber Bragg grating modulated via an acoustic flexural wave for optical heterodyne measurement

Zeyang Gao, Pengfa Chang, Ligang Huang, Feng Gao, Dong Mao, Wending Zhang, and Ting Mei
Opt. Lett. 44(15) 3725-3728 (2019)

Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs

Vicente Durán, Cȏme Schnébelin, and Hugues Guillet de Chatellus
Opt. Express 26(11) 13800-13809 (2018)

Environment-noise-free optical heterodyne retardation measurement using a double-pass acousto-optic frequency shifter

Che-Chung Chou, Shin-Yu Lu, Tyson Lin, Sheng-Hua Lu, and Ru-Jong Jeng
Opt. Lett. 41(22) 5138-5141 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16, 753–791 (2008).
    [Crossref] [PubMed]
  2. J. Conesa, J. Comellas, A. Zaragoza, and G. Junyent, “A novel optical receiver structure combining wavelength conversion and homodyne detection,” Eur. Trans. Telecomm. 18, 157–161 (2007).
    [Crossref]
  3. K. Kikuchi, T. Okoshi, and S. Tanikoshi, “Amplitude modulation of an injection-locked semiconductor laser for heterodyne-type optical communications,” Opt. Lett. 9, 99–101 (1984).
    [Crossref] [PubMed]
  4. Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
    [Crossref]
  5. G. Sonnabend, D. Stupar, M. Sornig, T. Stangier, T. Kostiuk, and T. A. Livengood, “A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy,” J. Mol. Spectrosc. 92, 031110 (2008).
  6. C. E. Lin, C. J. Yu, and C. C. Chen, “Design of a full-dynamic-range balanced detection heterodyne gyroscope with common path configuration,” Opt. Express 21, 9947–9958 (2013).
    [Crossref] [PubMed]
  7. D. M. Chambers, “Modeling heterodyne efficiency for coherent laser radar in the presence of aberrations,” Opt. Express 1, 60–67 (1997).
    [Crossref] [PubMed]
  8. C. Moon, S. Lee, and J. K. Chung, “A new fast inchworm type actuator with the robust I/Q heterodyne interferometer feedback,” Mechatronics 16, 105–110 (2006).
    [Crossref]
  9. P. Yang, G. Z. Xing, and L. B. He, “Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer,” Ultrasonics 54, 402–407 (2014).
    [Crossref]
  10. J. B. Abbiss and W. T. Mayo, “Deviation-free Bragg cell frequency-shifting,” Appl. Opt. 20, 588–590 (1981).
    [Crossref] [PubMed]
  11. K. K. Wong, R. M. D. L. Rue, and S. Wright, “Electro-optic-waveguide frequency translator in LiNbO3 fabricated by proton exchange,” Opt. Lett. 7, 546–548 (1982).
    [Crossref] [PubMed]
  12. Y. L. Li, S. Meersman, and R. Baets, “Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting,” Appl. Opt. 50, 2809–2814 (2011).
    [Crossref] [PubMed]
  13. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11, 389–391 (1986).
    [Crossref] [PubMed]
  14. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
    [Crossref]
  15. W. D. Zhang, L. G. Huang, F. Gao, F. Bo, L. Xuan, G. Q. Zhang, and J. J. Xu, “Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber,” Opt. Lett. 37, 1241–1243 (2012).
    [Crossref] [PubMed]
  16. T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
    [Crossref]
  17. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [Crossref]
  18. K. J. Lee, I. K. Hwang, H. C. Park, and B. Y. Kim, “Axial strain dependence of all-fiber acousto-optic tunable filters,” Opt. Express 17, 2348–2357 (2009).
    [Crossref] [PubMed]
  19. C. C. Huang, “Optical heterodyne profilometer,” Opt. Eng. 23, 365–370 (1984).
    [Crossref]
  20. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory MTT-30, 1635–1641 (1982).
    [Crossref]
  21. P. S. J. Russell and W. F. Liu, “Acousto-optic superlattice modulation in fiber Bragg gratings,” J. Opt. Soc. Am. A 17, 1421–1429 (2000).
    [Crossref]
  22. A. Diez, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36, 1187–1188 (2000).
    [Crossref]
  23. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22, 1358–1366 (2004).
    [Crossref]
  24. H. Y. Zhang, S. Zhao, T. F. Wang, and J. Guo, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” J. Mod. Opt. 60, 1789–1799 (2013).
    [Crossref]
  25. S. Blaize, B. Bérenguier, I. Stéfanon, A. Bruyant, G. Lérondel, P. Royer, O. Hugon, O. Jacquin, and E. Lacot, “Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry,” Opt. Express 16, 11718–11726 (2008).
    [Crossref] [PubMed]
  26. R. E. Silva, M. A. R. Franco, H. Bartelt, and A. A. P. Pohl, “Numerical characterization of piezoelectric resonant transducer modes for acoustic wave excitation in optical fibers,” Meas. Sci. Technol. 24, 094020 (2013).
    [Crossref]

2014 (1)

P. Yang, G. Z. Xing, and L. B. He, “Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer,” Ultrasonics 54, 402–407 (2014).
[Crossref]

2013 (3)

C. E. Lin, C. J. Yu, and C. C. Chen, “Design of a full-dynamic-range balanced detection heterodyne gyroscope with common path configuration,” Opt. Express 21, 9947–9958 (2013).
[Crossref] [PubMed]

H. Y. Zhang, S. Zhao, T. F. Wang, and J. Guo, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” J. Mod. Opt. 60, 1789–1799 (2013).
[Crossref]

R. E. Silva, M. A. R. Franco, H. Bartelt, and A. A. P. Pohl, “Numerical characterization of piezoelectric resonant transducer modes for acoustic wave excitation in optical fibers,” Meas. Sci. Technol. 24, 094020 (2013).
[Crossref]

2012 (1)

2011 (2)

Y. L. Li, S. Meersman, and R. Baets, “Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting,” Appl. Opt. 50, 2809–2814 (2011).
[Crossref] [PubMed]

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

2009 (1)

2008 (3)

2007 (1)

J. Conesa, J. Comellas, A. Zaragoza, and G. Junyent, “A novel optical receiver structure combining wavelength conversion and homodyne detection,” Eur. Trans. Telecomm. 18, 157–161 (2007).
[Crossref]

2006 (1)

C. Moon, S. Lee, and J. K. Chung, “A new fast inchworm type actuator with the robust I/Q heterodyne interferometer feedback,” Mechatronics 16, 105–110 (2006).
[Crossref]

2004 (1)

2002 (1)

2000 (2)

P. S. J. Russell and W. F. Liu, “Acousto-optic superlattice modulation in fiber Bragg gratings,” J. Opt. Soc. Am. A 17, 1421–1429 (2000).
[Crossref]

A. Diez, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36, 1187–1188 (2000).
[Crossref]

1997 (1)

1996 (2)

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

1986 (1)

1984 (2)

1982 (2)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory MTT-30, 1635–1641 (1982).
[Crossref]

K. K. Wong, R. M. D. L. Rue, and S. Wright, “Electro-optic-waveguide frequency translator in LiNbO3 fabricated by proton exchange,” Opt. Lett. 7, 546–548 (1982).
[Crossref] [PubMed]

1981 (1)

Abbiss, J. B.

Baets, R.

Barros, D. J. F.

Bartelt, H.

R. E. Silva, M. A. R. Franco, H. Bartelt, and A. A. P. Pohl, “Numerical characterization of piezoelectric resonant transducer modes for acoustic wave excitation in optical fibers,” Meas. Sci. Technol. 24, 094020 (2013).
[Crossref]

Bérenguier, B.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Birks, T. A.

A. Diez, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36, 1187–1188 (2000).
[Crossref]

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
[Crossref]

Blaize, S.

Blake, J. N.

Bo, F.

Bruyant, A.

Chambers, D. M.

Chan, F. Y. M.

Chen, C. C.

Chiang, K. S.

Chung, J. K.

C. Moon, S. Lee, and J. K. Chung, “A new fast inchworm type actuator with the robust I/Q heterodyne interferometer feedback,” Mechatronics 16, 105–110 (2006).
[Crossref]

Comellas, J.

J. Conesa, J. Comellas, A. Zaragoza, and G. Junyent, “A novel optical receiver structure combining wavelength conversion and homodyne detection,” Eur. Trans. Telecomm. 18, 157–161 (2007).
[Crossref]

Conesa, J.

J. Conesa, J. Comellas, A. Zaragoza, and G. Junyent, “A novel optical receiver structure combining wavelength conversion and homodyne detection,” Eur. Trans. Telecomm. 18, 157–161 (2007).
[Crossref]

Culverhouse, D. O.

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
[Crossref]

Dandridge, A.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory MTT-30, 1635–1641 (1982).
[Crossref]

Diez, A.

A. Diez, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36, 1187–1188 (2000).
[Crossref]

Engan, H. E.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Franco, M. A. R.

R. E. Silva, M. A. R. Franco, H. Bartelt, and A. A. P. Pohl, “Numerical characterization of piezoelectric resonant transducer modes for acoustic wave excitation in optical fibers,” Meas. Sci. Technol. 24, 094020 (2013).
[Crossref]

Gao, F.

Gao, J. R.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory MTT-30, 1635–1641 (1982).
[Crossref]

Guo, J.

H. Y. Zhang, S. Zhao, T. F. Wang, and J. Guo, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” J. Mod. Opt. 60, 1789–1799 (2013).
[Crossref]

He, L. B.

P. Yang, G. Z. Xing, and L. B. He, “Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer,” Ultrasonics 54, 402–407 (2014).
[Crossref]

Higgins, R.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Hovenier, J. N.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Hu, Q.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Huang, C. C.

C. C. Huang, “Optical heterodyne profilometer,” Opt. Eng. 23, 365–370 (1984).
[Crossref]

Huang, L. G.

Hugon, O.

Hwang, I. K.

Ip, E.

Jacquin, O.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Junyent, G.

J. Conesa, J. Comellas, A. Zaragoza, and G. Junyent, “A novel optical receiver structure combining wavelength conversion and homodyne detection,” Eur. Trans. Telecomm. 18, 157–161 (2007).
[Crossref]

Kahn, J. M.

Kakarantzas, G.

A. Diez, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36, 1187–1188 (2000).
[Crossref]

Kao, T. Y.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Kikuchi, K.

Kim, B. Y.

Klapwijk, T. M.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Klein, B.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Kostiuk, T.

G. Sonnabend, D. Stupar, M. Sornig, T. Stangier, T. Kostiuk, and T. A. Livengood, “A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy,” J. Mol. Spectrosc. 92, 031110 (2008).

Lacot, E.

Lau, A. P. T.

Lee, K. J.

Lee, S.

C. Moon, S. Lee, and J. K. Chung, “A new fast inchworm type actuator with the robust I/Q heterodyne interferometer feedback,” Mechatronics 16, 105–110 (2006).
[Crossref]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Lérondel, G.

Li, Y. L.

Lin, C. E.

Liu, W. F.

Livengood, T. A.

G. Sonnabend, D. Stupar, M. Sornig, T. Stangier, T. Kostiuk, and T. A. Livengood, “A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy,” J. Mol. Spectrosc. 92, 031110 (2008).

Mayo, W. T.

Meersman, S.

Moon, C.

C. Moon, S. Lee, and J. K. Chung, “A new fast inchworm type actuator with the robust I/Q heterodyne interferometer feedback,” Mechatronics 16, 105–110 (2006).
[Crossref]

Ng, M. N.

Okoshi, T.

Park, H. C.

Park, H. S.

Pohl, A. A. P.

R. E. Silva, M. A. R. Franco, H. Bartelt, and A. A. P. Pohl, “Numerical characterization of piezoelectric resonant transducer modes for acoustic wave excitation in optical fibers,” Meas. Sci. Technol. 24, 094020 (2013).
[Crossref]

Ren, Y.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Reno, J. L.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Royer, P.

Rue, R. M. D. L.

Russell, P. S.

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
[Crossref]

Russell, P. S. J.

A. Diez, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36, 1187–1188 (2000).
[Crossref]

P. S. J. Russell and W. F. Liu, “Acousto-optic superlattice modulation in fiber Bragg gratings,” J. Opt. Soc. Am. A 17, 1421–1429 (2000).
[Crossref]

Shaw, H. J.

Shi, S. C.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Silva, R. E.

R. E. Silva, M. A. R. Franco, H. Bartelt, and A. A. P. Pohl, “Numerical characterization of piezoelectric resonant transducer modes for acoustic wave excitation in optical fibers,” Meas. Sci. Technol. 24, 094020 (2013).
[Crossref]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Song, K. Y.

Sonnabend, G.

G. Sonnabend, D. Stupar, M. Sornig, T. Stangier, T. Kostiuk, and T. A. Livengood, “A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy,” J. Mol. Spectrosc. 92, 031110 (2008).

Sornig, M.

G. Sonnabend, D. Stupar, M. Sornig, T. Stangier, T. Kostiuk, and T. A. Livengood, “A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy,” J. Mol. Spectrosc. 92, 031110 (2008).

Stangier, T.

G. Sonnabend, D. Stupar, M. Sornig, T. Stangier, T. Kostiuk, and T. A. Livengood, “A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy,” J. Mol. Spectrosc. 92, 031110 (2008).

Stéfanon, I.

Stupar, D.

G. Sonnabend, D. Stupar, M. Sornig, T. Stangier, T. Kostiuk, and T. A. Livengood, “A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy,” J. Mol. Spectrosc. 92, 031110 (2008).

Tanikoshi, S.

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory MTT-30, 1635–1641 (1982).
[Crossref]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

Wang, T. F.

H. Y. Zhang, S. Zhao, T. F. Wang, and J. Guo, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” J. Mod. Opt. 60, 1789–1799 (2013).
[Crossref]

Wong, K. K.

Wright, S.

Xing, G. Z.

P. Yang, G. Z. Xing, and L. B. He, “Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer,” Ultrasonics 54, 402–407 (2014).
[Crossref]

Xu, J. J.

Xuan, L.

Yang, P.

P. Yang, G. Z. Xing, and L. B. He, “Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer,” Ultrasonics 54, 402–407 (2014).
[Crossref]

Yu, C. J.

Yun, S. H.

Zaragoza, A.

J. Conesa, J. Comellas, A. Zaragoza, and G. Junyent, “A novel optical receiver structure combining wavelength conversion and homodyne detection,” Eur. Trans. Telecomm. 18, 157–161 (2007).
[Crossref]

Zhang, G. Q.

Zhang, H. Y.

H. Y. Zhang, S. Zhao, T. F. Wang, and J. Guo, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” J. Mod. Opt. 60, 1789–1799 (2013).
[Crossref]

Zhang, W. D.

Zhao, S.

H. Y. Zhang, S. Zhao, T. F. Wang, and J. Guo, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” J. Mod. Opt. 60, 1789–1799 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T. Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Appl. Phys. Lett. 98, 231109 (2011).
[Crossref]

Electron. Lett. (1)

A. Diez, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36, 1187–1188 (2000).
[Crossref]

Eur. Trans. Telecomm. (1)

J. Conesa, J. Comellas, A. Zaragoza, and G. Junyent, “A novel optical receiver structure combining wavelength conversion and homodyne detection,” Eur. Trans. Telecomm. 18, 157–161 (2007).
[Crossref]

IEEE T. Microw. Theory (1)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE T. Microw. Theory MTT-30, 1635–1641 (1982).
[Crossref]

J. Lightwave Technol. (4)

K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22, 1358–1366 (2004).
[Crossref]

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20, 1864–1868 (2002).
[Crossref]

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14, 2519–2529 (1996).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[Crossref]

J. Mod. Opt. (1)

H. Y. Zhang, S. Zhao, T. F. Wang, and J. Guo, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” J. Mod. Opt. 60, 1789–1799 (2013).
[Crossref]

J. Mol. Spectrosc. (1)

G. Sonnabend, D. Stupar, M. Sornig, T. Stangier, T. Kostiuk, and T. A. Livengood, “A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy,” J. Mol. Spectrosc. 92, 031110 (2008).

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

R. E. Silva, M. A. R. Franco, H. Bartelt, and A. A. P. Pohl, “Numerical characterization of piezoelectric resonant transducer modes for acoustic wave excitation in optical fibers,” Meas. Sci. Technol. 24, 094020 (2013).
[Crossref]

Mechatronics (1)

C. Moon, S. Lee, and J. K. Chung, “A new fast inchworm type actuator with the robust I/Q heterodyne interferometer feedback,” Mechatronics 16, 105–110 (2006).
[Crossref]

Opt. Eng. (1)

C. C. Huang, “Optical heterodyne profilometer,” Opt. Eng. 23, 365–370 (1984).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Ultrasonics (1)

P. Yang, G. Z. Xing, and L. B. He, “Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer,” Ultrasonics 54, 402–407 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental configuration for optical heterodyne micro-vibration measurement based on all-fiber AOFS. RF: radio frequency; PZT: piezoelectric transducer; SMF: single mode fiber; TF: tapered fiber; PC: polarization controller; PZM: piezoelectric mirror.
Fig. 2
Fig. 2 (a) Carrier signal produced by the optical heterodyne detection device. The inset shows the magnified carrier signal in the red rectangle. (b) Fourier frequency spectrum of the carrier signal. (c) Background noise spectrum of the system obtained by demodulating the carrier signal.
Fig. 3
Fig. 3 (a) Waveform of the phase modulated signal produced by the optical heterodyne detection device. (b) Fourier frequency spectrum of the phase modulated signal. (c) Vibration waveform obtained by demodulating the phase modulated signal. The black circles are the demodulated experimental data and the blue curve is the theoretical calculation with U = 0.09 nm and f 0 = 90 kHz.
Fig. 4
Fig. 4 (a) Dependence of the vibration amplitude of PZM on Vpp with a driving frequency of 90 kHz, the inset shows the case when Vpp is less than 0.1 V. (b) The measured responding frequency spectrum (black circles) of the vibration amplitude of PZM with Vpp = 10 V and the impedance (blue curve) of the PZM, which shows that the PZM has several resonant frequencies such as 37 kHz, 61 kHz and 156 kHz.
Fig. 5
Fig. 5 Four special vibrating waveforms (black curves) demodulated by this system and the corresponding driving voltage waveforms (blue curves) applied on the PZM.
Fig. 6
Fig. 6 The motion trajectories (black curve) programmed by NanoCube Piezo Controller and demodulated (blue curve) by this heterodyne detection system.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ = ( n 01 n 1 u ) Λ .
S ( t ) = β A B cos [ 2 π f a t ] .
S ( t ) = β A B cos [ 2 π f a t + 4 π u ( t ) λ ] .
S ( t ) = β A B { J 0 ( 4 π U λ ) cos ( 2 π f a t ) + n = 1 J n ( 4 π U λ ) [ cos ( 2 π ( f a + n f 0 ) t ) + ( 1 ) n cos ( 2 π ( f a n f 0 ) t ) ] } .
S ( t ) = β A B { J 0 ( 4 π U λ ) cos ( 2 π f a t ) + J 1 ( 4 π U λ ) [ cos ( 2 π ( f a + f 0 ) t ) cos ( 2 π ( f a f 0 ) t ) ] } ,
F ( f ) = β A B 2 { J 0 ( 4 π U λ ) δ ( f f a ) + J 1 ( 4 π U λ ) [ δ ( f ( f a + f 0 ) ) δ ( f ( f a f 0 ) ) ] } .

Metrics