Abstract

A vacuum auto-resonance accelerator scheme for electrons, which employs terahertz radiation and currently available magnetic fields, is suggested. Based on numerical simulations, parameter values, which could make the scheme experimentally feasible, are identified and discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond phase control in high-field terahertz-driven ultrafast electron sources

Dongfang Zhang, Arya Fallahi, Michael Hemmer, Hong Ye, Moein Fakhari, Yi Hua, Huseyin Cankaya, Anne-Laure Calendron, Luis E. Zapata, Nicholas H. Matlis, and Franz X. Kärtner
Optica 6(7) 872-877 (2019)

Compact electron acceleration and bunch compression in THz waveguides

Liang Jie Wong, Arya Fallahi, and Franz X. Kärtner
Opt. Express 21(8) 9792-9806 (2013)

Single-cycle attosecond pulses by Thomson backscattering of terahertz pulses

György Tóth, Zoltán Tibai, Ashutosh Sharma, József A. Fülöp, and János Hebling
J. Opt. Soc. Am. B 35(5) A103-A109 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. P. Milant’ev, “Cyclotron autoresonance: 50 years since its discovery,” Phys. Usp. 56, 823–832 (2013).
    [Crossref]
  2. C. R. Roberts and S. J. Buchsbaum, “Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propa-gating along the field,” Phys. Rev. 135, A381–A389 (1964).
    [Crossref]
  3. A. Loeb and L. Friedland, “Autoresonance laser accelerator,” Phys. Rev. A 33, 1828–1835 (1986).
    [Crossref] [PubMed]
  4. Y. I. Salamin, F. H. M. Faisal, and C. H. Keitel, “Exact analysis of ultrahigh laser-induced acceleration of electrons by cyclotron autoresonance,” Phys. Rev. A 62, 053809 (2000).
    [Crossref]
  5. K. P. Singh, “Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum,” Phys. Rev. E 69, 056410 (2004).
    [Crossref]
  6. K. P. Singh, “Electron acceleration by a linearly polarized laser pulse in the presence of a pulsed intense axial magnetic field in vacuum,” J. Opt. Soc. Am. B 23, 1650–1654 (2006).
    [Crossref]
  7. J. L. Hirshfield and C-B. Wang, “Laser-driven cyclotron autoresonance accelerator with production of an optically-chopped electron beam,” Phys. Rev. E 61, 7252–7255 (2000).
    [Crossref]
  8. M. A. LaPointe, R. B. Yoder, C-B. Wang, A. K. Ganguly, and J. L. Hirshfield, “Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration,” Phys. Rev. Lett. 76, 2718–2721 (1996).
    [Crossref] [PubMed]
  9. S. V. Shchelkunov, T. C. Marshall, J. L. Hirshfield, C-B. Wang, and M. A. LaPointe, “The LACARA vacuum laser accelerator experiment: Beam positioning and alignment in a strong magnetic field,” in AIP Conference Proceedings 877: 12th Advanced Accelerator Concepts Workshop, M. Condeand and C. Eyberger, eds. (AIP, 2006), pp. 880–887.
  10. B. J. Galow, J-X. Li, Y. I. Salamin, Z. Harman, and C. H. Keitel, “High-quality multi-GeV electron bunches via cyclotron autoresonance,” Phys. Rev. ST-AB 16, 081302 (2013).
  11. C. M. Armstrong, “The truth about terahertz,” IEEE Spectrum 49(9), 36–41 (2012), http://spectrum.ieee.org/aerospace/military/the-truth-about-terahertz .
    [Crossref]
  12. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
    [Crossref] [PubMed]
  13. M. Walther, B. Fischer, M. Schall, H. Helm, and P. U. Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
    [Crossref]
  14. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17, 3826–3834 (2009).
    [Crossref] [PubMed]
  15. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Las. Photon. Rev. 5, 124–166 (2011).
    [Crossref]
  16. G. R. Neil, “Accelerator sources for THz science: a review,” J. Infrared Millim. Thz. Waves 35, 5–16 (2014).
    [Crossref]
  17. A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
    [Crossref] [PubMed]
  18. W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, “Strong terahertz pulse generation by chirped laser pulses in tenuous gases,” Opt. Express 16, 16999–17006 (2008).
    [Crossref] [PubMed]
  19. Z.-Y. Chen, X.-Y. Li, and Y. Wei, “Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas,” Phys. Plasmas 20, 103115 (2013).
    [Crossref]
  20. F. Wang, G. Xie, P. Yuan, and L. Qian, “Theoretical design of 100-terawatt-level mid-infrared laser,” Laser Phys. Lett. 12, 075402 (2015).
    [Crossref]
  21. J.-X. Li, K. Z. Hatsagortsyan, and C. H. Keitel, “Robust signatures of quantum radiation reaction in focused ultrashort laser pulses,” Phys. Rev. Lett. 113, 044801 (2014).
    [Crossref] [PubMed]
  22. Y. I. Salamin, “Fields of a Gaussian beam beyond the paraxial approximation,” Appl. Phys. B 86, 319–326 (2007).
    [Crossref]
  23. J.-X. Li, Y. I. Salamin, K. Z. Hatsagortsyan, and C. H. Keitel, “Fields of an ultrashort tightly-focused laser pulse,” http://arxiv.org/pdf/1504.00988 .
  24. S. Y. Lee, Accelerator Physics, 2nd ed. (World Scientific, 2004).
    [Crossref]
  25. B. J. Galow, Z. Harman, and C. H. Keitel, “Intense high-quality medical proton beams via laser fields,” Opt. Express 18, 25950–25957 (2010).
    [Crossref] [PubMed]
  26. Y. I. Salamin, J.-X. Li, B. J. Galow, Z. Harman, and C. H. Keitel, “Laser acceleration of proton bunches by petawatt chirped linearly polarized laser pulses,” Phys. Rev. A 85, 063831 (2012).
    [Crossref]
  27. J. Singleton, C. H. Mielke, A. Migliori, G. S. Boebinger, and A. H. Lacerda, “The national high magnetic field laboratory pulsed-field facility at Los Alamos National Laboratory,” Physica B 346, 614–617 (2004).
    [Crossref]
  28. See: “National High Magnetic Field Laboratory, Pulsed Field Facility,” http://www.lanl.gov/orgs/mpa/nhmfl/ , and “60 tesla long pulse magnet,” http://www.lanl.gov/orgs/mpa/nhmfl/60TLP.shtml .

2015 (1)

F. Wang, G. Xie, P. Yuan, and L. Qian, “Theoretical design of 100-terawatt-level mid-infrared laser,” Laser Phys. Lett. 12, 075402 (2015).
[Crossref]

2014 (2)

J.-X. Li, K. Z. Hatsagortsyan, and C. H. Keitel, “Robust signatures of quantum radiation reaction in focused ultrashort laser pulses,” Phys. Rev. Lett. 113, 044801 (2014).
[Crossref] [PubMed]

G. R. Neil, “Accelerator sources for THz science: a review,” J. Infrared Millim. Thz. Waves 35, 5–16 (2014).
[Crossref]

2013 (4)

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Z.-Y. Chen, X.-Y. Li, and Y. Wei, “Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas,” Phys. Plasmas 20, 103115 (2013).
[Crossref]

V. P. Milant’ev, “Cyclotron autoresonance: 50 years since its discovery,” Phys. Usp. 56, 823–832 (2013).
[Crossref]

B. J. Galow, J-X. Li, Y. I. Salamin, Z. Harman, and C. H. Keitel, “High-quality multi-GeV electron bunches via cyclotron autoresonance,” Phys. Rev. ST-AB 16, 081302 (2013).

2012 (2)

C. M. Armstrong, “The truth about terahertz,” IEEE Spectrum 49(9), 36–41 (2012), http://spectrum.ieee.org/aerospace/military/the-truth-about-terahertz .
[Crossref]

Y. I. Salamin, J.-X. Li, B. J. Galow, Z. Harman, and C. H. Keitel, “Laser acceleration of proton bunches by petawatt chirped linearly polarized laser pulses,” Phys. Rev. A 85, 063831 (2012).
[Crossref]

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Las. Photon. Rev. 5, 124–166 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

2007 (1)

Y. I. Salamin, “Fields of a Gaussian beam beyond the paraxial approximation,” Appl. Phys. B 86, 319–326 (2007).
[Crossref]

2006 (1)

2004 (2)

J. Singleton, C. H. Mielke, A. Migliori, G. S. Boebinger, and A. H. Lacerda, “The national high magnetic field laboratory pulsed-field facility at Los Alamos National Laboratory,” Physica B 346, 614–617 (2004).
[Crossref]

K. P. Singh, “Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum,” Phys. Rev. E 69, 056410 (2004).
[Crossref]

2002 (1)

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[Crossref] [PubMed]

2000 (3)

M. Walther, B. Fischer, M. Schall, H. Helm, and P. U. Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Y. I. Salamin, F. H. M. Faisal, and C. H. Keitel, “Exact analysis of ultrahigh laser-induced acceleration of electrons by cyclotron autoresonance,” Phys. Rev. A 62, 053809 (2000).
[Crossref]

J. L. Hirshfield and C-B. Wang, “Laser-driven cyclotron autoresonance accelerator with production of an optically-chopped electron beam,” Phys. Rev. E 61, 7252–7255 (2000).
[Crossref]

1996 (1)

M. A. LaPointe, R. B. Yoder, C-B. Wang, A. K. Ganguly, and J. L. Hirshfield, “Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration,” Phys. Rev. Lett. 76, 2718–2721 (1996).
[Crossref] [PubMed]

1986 (1)

A. Loeb and L. Friedland, “Autoresonance laser accelerator,” Phys. Rev. A 33, 1828–1835 (1986).
[Crossref] [PubMed]

1964 (1)

C. R. Roberts and S. J. Buchsbaum, “Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propa-gating along the field,” Phys. Rev. 135, A381–A389 (1964).
[Crossref]

Armstrong, C. M.

C. M. Armstrong, “The truth about terahertz,” IEEE Spectrum 49(9), 36–41 (2012), http://spectrum.ieee.org/aerospace/military/the-truth-about-terahertz .
[Crossref]

Bitzer, A.

Boebinger, G. S.

J. Singleton, C. H. Mielke, A. Migliori, G. S. Boebinger, and A. H. Lacerda, “The national high magnetic field laboratory pulsed-field facility at Los Alamos National Laboratory,” Physica B 346, 614–617 (2004).
[Crossref]

Brömmel, D.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Buchsbaum, S. J.

C. R. Roberts and S. J. Buchsbaum, “Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propa-gating along the field,” Phys. Rev. 135, A381–A389 (1964).
[Crossref]

Carr, G. L.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[Crossref] [PubMed]

Chen, M.

Chen, Z.-Y.

Z.-Y. Chen, X.-Y. Li, and Y. Wei, “Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas,” Phys. Plasmas 20, 103115 (2013).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Las. Photon. Rev. 5, 124–166 (2011).
[Crossref]

Dillner, U.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Faisal, F. H. M.

Y. I. Salamin, F. H. M. Faisal, and C. H. Keitel, “Exact analysis of ultrahigh laser-induced acceleration of electrons by cyclotron autoresonance,” Phys. Rev. A 62, 053809 (2000).
[Crossref]

Feurer, T.

Fischer, B.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. U. Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Friedland, L.

A. Loeb and L. Friedland, “Autoresonance laser accelerator,” Phys. Rev. A 33, 1828–1835 (1986).
[Crossref] [PubMed]

Galow, B. J.

B. J. Galow, J-X. Li, Y. I. Salamin, Z. Harman, and C. H. Keitel, “High-quality multi-GeV electron bunches via cyclotron autoresonance,” Phys. Rev. ST-AB 16, 081302 (2013).

Y. I. Salamin, J.-X. Li, B. J. Galow, Z. Harman, and C. H. Keitel, “Laser acceleration of proton bunches by petawatt chirped linearly polarized laser pulses,” Phys. Rev. A 85, 063831 (2012).
[Crossref]

B. J. Galow, Z. Harman, and C. H. Keitel, “Intense high-quality medical proton beams via laser fields,” Opt. Express 18, 25950–25957 (2010).
[Crossref] [PubMed]

Ganguly, A. K.

M. A. LaPointe, R. B. Yoder, C-B. Wang, A. K. Ganguly, and J. L. Hirshfield, “Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration,” Phys. Rev. Lett. 76, 2718–2721 (1996).
[Crossref] [PubMed]

Gibbon, P.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Gopal, A.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Harman, Z.

B. J. Galow, J-X. Li, Y. I. Salamin, Z. Harman, and C. H. Keitel, “High-quality multi-GeV electron bunches via cyclotron autoresonance,” Phys. Rev. ST-AB 16, 081302 (2013).

Y. I. Salamin, J.-X. Li, B. J. Galow, Z. Harman, and C. H. Keitel, “Laser acceleration of proton bunches by petawatt chirped linearly polarized laser pulses,” Phys. Rev. A 85, 063831 (2012).
[Crossref]

B. J. Galow, Z. Harman, and C. H. Keitel, “Intense high-quality medical proton beams via laser fields,” Opt. Express 18, 25950–25957 (2010).
[Crossref] [PubMed]

Hatsagortsyan, K. Z.

J.-X. Li, K. Z. Hatsagortsyan, and C. H. Keitel, “Robust signatures of quantum radiation reaction in focused ultrashort laser pulses,” Phys. Rev. Lett. 113, 044801 (2014).
[Crossref] [PubMed]

Helm, H.

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17, 3826–3834 (2009).
[Crossref] [PubMed]

M. Walther, B. Fischer, M. Schall, H. Helm, and P. U. Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Herzer, S.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Hirshfield, J. L.

J. L. Hirshfield and C-B. Wang, “Laser-driven cyclotron autoresonance accelerator with production of an optically-chopped electron beam,” Phys. Rev. E 61, 7252–7255 (2000).
[Crossref]

M. A. LaPointe, R. B. Yoder, C-B. Wang, A. K. Ganguly, and J. L. Hirshfield, “Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration,” Phys. Rev. Lett. 76, 2718–2721 (1996).
[Crossref] [PubMed]

S. V. Shchelkunov, T. C. Marshall, J. L. Hirshfield, C-B. Wang, and M. A. LaPointe, “The LACARA vacuum laser accelerator experiment: Beam positioning and alignment in a strong magnetic field,” in AIP Conference Proceedings 877: 12th Advanced Accelerator Concepts Workshop, M. Condeand and C. Eyberger, eds. (AIP, 2006), pp. 880–887.

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Las. Photon. Rev. 5, 124–166 (2011).
[Crossref]

M. Walther, B. Fischer, M. Schall, H. Helm, and P. U. Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Jordan, K.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[Crossref] [PubMed]

Karmakar, A.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Keitel, C. H.

J.-X. Li, K. Z. Hatsagortsyan, and C. H. Keitel, “Robust signatures of quantum radiation reaction in focused ultrashort laser pulses,” Phys. Rev. Lett. 113, 044801 (2014).
[Crossref] [PubMed]

B. J. Galow, J-X. Li, Y. I. Salamin, Z. Harman, and C. H. Keitel, “High-quality multi-GeV electron bunches via cyclotron autoresonance,” Phys. Rev. ST-AB 16, 081302 (2013).

Y. I. Salamin, J.-X. Li, B. J. Galow, Z. Harman, and C. H. Keitel, “Laser acceleration of proton bunches by petawatt chirped linearly polarized laser pulses,” Phys. Rev. A 85, 063831 (2012).
[Crossref]

B. J. Galow, Z. Harman, and C. H. Keitel, “Intense high-quality medical proton beams via laser fields,” Opt. Express 18, 25950–25957 (2010).
[Crossref] [PubMed]

Y. I. Salamin, F. H. M. Faisal, and C. H. Keitel, “Exact analysis of ultrahigh laser-induced acceleration of electrons by cyclotron autoresonance,” Phys. Rev. A 62, 053809 (2000).
[Crossref]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Las. Photon. Rev. 5, 124–166 (2011).
[Crossref]

Lacerda, A. H.

J. Singleton, C. H. Mielke, A. Migliori, G. S. Boebinger, and A. H. Lacerda, “The national high magnetic field laboratory pulsed-field facility at Los Alamos National Laboratory,” Physica B 346, 614–617 (2004).
[Crossref]

LaPointe, M. A.

M. A. LaPointe, R. B. Yoder, C-B. Wang, A. K. Ganguly, and J. L. Hirshfield, “Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration,” Phys. Rev. Lett. 76, 2718–2721 (1996).
[Crossref] [PubMed]

S. V. Shchelkunov, T. C. Marshall, J. L. Hirshfield, C-B. Wang, and M. A. LaPointe, “The LACARA vacuum laser accelerator experiment: Beam positioning and alignment in a strong magnetic field,” in AIP Conference Proceedings 877: 12th Advanced Accelerator Concepts Workshop, M. Condeand and C. Eyberger, eds. (AIP, 2006), pp. 880–887.

Lee, S. Y.

S. Y. Lee, Accelerator Physics, 2nd ed. (World Scientific, 2004).
[Crossref]

Li, C.

Li, J.-X.

J.-X. Li, K. Z. Hatsagortsyan, and C. H. Keitel, “Robust signatures of quantum radiation reaction in focused ultrashort laser pulses,” Phys. Rev. Lett. 113, 044801 (2014).
[Crossref] [PubMed]

Y. I. Salamin, J.-X. Li, B. J. Galow, Z. Harman, and C. H. Keitel, “Laser acceleration of proton bunches by petawatt chirped linearly polarized laser pulses,” Phys. Rev. A 85, 063831 (2012).
[Crossref]

Li, J-X.

B. J. Galow, J-X. Li, Y. I. Salamin, Z. Harman, and C. H. Keitel, “High-quality multi-GeV electron bunches via cyclotron autoresonance,” Phys. Rev. ST-AB 16, 081302 (2013).

Li, X.-Y.

Z.-Y. Chen, X.-Y. Li, and Y. Wei, “Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas,” Phys. Plasmas 20, 103115 (2013).
[Crossref]

Loeb, A.

A. Loeb and L. Friedland, “Autoresonance laser accelerator,” Phys. Rev. A 33, 1828–1835 (1986).
[Crossref] [PubMed]

Marshall, T. C.

S. V. Shchelkunov, T. C. Marshall, J. L. Hirshfield, C-B. Wang, and M. A. LaPointe, “The LACARA vacuum laser accelerator experiment: Beam positioning and alignment in a strong magnetic field,” in AIP Conference Proceedings 877: 12th Advanced Accelerator Concepts Workshop, M. Condeand and C. Eyberger, eds. (AIP, 2006), pp. 880–887.

Martin, M. C.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[Crossref] [PubMed]

May, T.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

McKinney, W. R.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[Crossref] [PubMed]

Merbold, H.

Meyer, H-G

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Mielke, C. H.

J. Singleton, C. H. Mielke, A. Migliori, G. S. Boebinger, and A. H. Lacerda, “The national high magnetic field laboratory pulsed-field facility at Los Alamos National Laboratory,” Physica B 346, 614–617 (2004).
[Crossref]

Migliori, A.

J. Singleton, C. H. Mielke, A. Migliori, G. S. Boebinger, and A. H. Lacerda, “The national high magnetic field laboratory pulsed-field facility at Los Alamos National Laboratory,” Physica B 346, 614–617 (2004).
[Crossref]

Milant’ev, V. P.

V. P. Milant’ev, “Cyclotron autoresonance: 50 years since its discovery,” Phys. Usp. 56, 823–832 (2013).
[Crossref]

Mima, K.

Neil, G. R.

G. R. Neil, “Accelerator sources for THz science: a review,” J. Infrared Millim. Thz. Waves 35, 5–16 (2014).
[Crossref]

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[Crossref] [PubMed]

Paulus, G. G.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Qian, L.

F. Wang, G. Xie, P. Yuan, and L. Qian, “Theoretical design of 100-terawatt-level mid-infrared laser,” Laser Phys. Lett. 12, 075402 (2015).
[Crossref]

Reinhard, A.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Roberts, C. R.

C. R. Roberts and S. J. Buchsbaum, “Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propa-gating along the field,” Phys. Rev. 135, A381–A389 (1964).
[Crossref]

Salamin, Y. I.

B. J. Galow, J-X. Li, Y. I. Salamin, Z. Harman, and C. H. Keitel, “High-quality multi-GeV electron bunches via cyclotron autoresonance,” Phys. Rev. ST-AB 16, 081302 (2013).

Y. I. Salamin, J.-X. Li, B. J. Galow, Z. Harman, and C. H. Keitel, “Laser acceleration of proton bunches by petawatt chirped linearly polarized laser pulses,” Phys. Rev. A 85, 063831 (2012).
[Crossref]

Y. I. Salamin, “Fields of a Gaussian beam beyond the paraxial approximation,” Appl. Phys. B 86, 319–326 (2007).
[Crossref]

Y. I. Salamin, F. H. M. Faisal, and C. H. Keitel, “Exact analysis of ultrahigh laser-induced acceleration of electrons by cyclotron autoresonance,” Phys. Rev. A 62, 053809 (2000).
[Crossref]

Schall, M.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. U. Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Schmidt, A.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Shchelkunov, S. V.

S. V. Shchelkunov, T. C. Marshall, J. L. Hirshfield, C-B. Wang, and M. A. LaPointe, “The LACARA vacuum laser accelerator experiment: Beam positioning and alignment in a strong magnetic field,” in AIP Conference Proceedings 877: 12th Advanced Accelerator Concepts Workshop, M. Condeand and C. Eyberger, eds. (AIP, 2006), pp. 880–887.

Sheng, Z.-M.

Singh, K. P.

K. P. Singh, “Electron acceleration by a linearly polarized laser pulse in the presence of a pulsed intense axial magnetic field in vacuum,” J. Opt. Soc. Am. B 23, 1650–1654 (2006).
[Crossref]

K. P. Singh, “Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum,” Phys. Rev. E 69, 056410 (2004).
[Crossref]

Singh, P.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Singleton, J.

J. Singleton, C. H. Mielke, A. Migliori, G. S. Boebinger, and A. H. Lacerda, “The national high magnetic field laboratory pulsed-field facility at Los Alamos National Laboratory,” Physica B 346, 614–617 (2004).
[Crossref]

Thoman, A.

Walther, M.

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17, 3826–3834 (2009).
[Crossref] [PubMed]

M. Walther, B. Fischer, M. Schall, H. Helm, and P. U. Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

Wang, C-B.

J. L. Hirshfield and C-B. Wang, “Laser-driven cyclotron autoresonance accelerator with production of an optically-chopped electron beam,” Phys. Rev. E 61, 7252–7255 (2000).
[Crossref]

M. A. LaPointe, R. B. Yoder, C-B. Wang, A. K. Ganguly, and J. L. Hirshfield, “Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration,” Phys. Rev. Lett. 76, 2718–2721 (1996).
[Crossref] [PubMed]

S. V. Shchelkunov, T. C. Marshall, J. L. Hirshfield, C-B. Wang, and M. A. LaPointe, “The LACARA vacuum laser accelerator experiment: Beam positioning and alignment in a strong magnetic field,” in AIP Conference Proceedings 877: 12th Advanced Accelerator Concepts Workshop, M. Condeand and C. Eyberger, eds. (AIP, 2006), pp. 880–887.

Wang, F.

F. Wang, G. Xie, P. Yuan, and L. Qian, “Theoretical design of 100-terawatt-level mid-infrared laser,” Laser Phys. Lett. 12, 075402 (2015).
[Crossref]

Wang, W.-M.

Wei, Y.

Z.-Y. Chen, X.-Y. Li, and Y. Wei, “Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas,” Phys. Plasmas 20, 103115 (2013).
[Crossref]

Williams, G. P.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[Crossref] [PubMed]

Wu, H.-C.

Xie, G.

F. Wang, G. Xie, P. Yuan, and L. Qian, “Theoretical design of 100-terawatt-level mid-infrared laser,” Laser Phys. Lett. 12, 075402 (2015).
[Crossref]

Yoder, R. B.

M. A. LaPointe, R. B. Yoder, C-B. Wang, A. K. Ganguly, and J. L. Hirshfield, “Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration,” Phys. Rev. Lett. 76, 2718–2721 (1996).
[Crossref] [PubMed]

Yuan, P.

F. Wang, G. Xie, P. Yuan, and L. Qian, “Theoretical design of 100-terawatt-level mid-infrared laser,” Laser Phys. Lett. 12, 075402 (2015).
[Crossref]

Zhang, J.

Ziegler, W.

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

Appl. Phys. B (1)

Y. I. Salamin, “Fields of a Gaussian beam beyond the paraxial approximation,” Appl. Phys. B 86, 319–326 (2007).
[Crossref]

Chem. Phys. Lett. (1)

M. Walther, B. Fischer, M. Schall, H. Helm, and P. U. Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332, 389–395 (2000).
[Crossref]

IEEE Spectrum (1)

C. M. Armstrong, “The truth about terahertz,” IEEE Spectrum 49(9), 36–41 (2012), http://spectrum.ieee.org/aerospace/military/the-truth-about-terahertz .
[Crossref]

J. Infrared Millim. Thz. Waves (1)

G. R. Neil, “Accelerator sources for THz science: a review,” J. Infrared Millim. Thz. Waves 35, 5–16 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Las. Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Las. Photon. Rev. 5, 124–166 (2011).
[Crossref]

Laser Phys. Lett. (1)

F. Wang, G. Xie, P. Yuan, and L. Qian, “Theoretical design of 100-terawatt-level mid-infrared laser,” Laser Phys. Lett. 12, 075402 (2015).
[Crossref]

Nature (1)

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Plasmas (1)

Z.-Y. Chen, X.-Y. Li, and Y. Wei, “Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas,” Phys. Plasmas 20, 103115 (2013).
[Crossref]

Phys. Rev. (1)

C. R. Roberts and S. J. Buchsbaum, “Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propa-gating along the field,” Phys. Rev. 135, A381–A389 (1964).
[Crossref]

Phys. Rev. A (3)

A. Loeb and L. Friedland, “Autoresonance laser accelerator,” Phys. Rev. A 33, 1828–1835 (1986).
[Crossref] [PubMed]

Y. I. Salamin, F. H. M. Faisal, and C. H. Keitel, “Exact analysis of ultrahigh laser-induced acceleration of electrons by cyclotron autoresonance,” Phys. Rev. A 62, 053809 (2000).
[Crossref]

Y. I. Salamin, J.-X. Li, B. J. Galow, Z. Harman, and C. H. Keitel, “Laser acceleration of proton bunches by petawatt chirped linearly polarized laser pulses,” Phys. Rev. A 85, 063831 (2012).
[Crossref]

Phys. Rev. E (2)

K. P. Singh, “Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum,” Phys. Rev. E 69, 056410 (2004).
[Crossref]

J. L. Hirshfield and C-B. Wang, “Laser-driven cyclotron autoresonance accelerator with production of an optically-chopped electron beam,” Phys. Rev. E 61, 7252–7255 (2000).
[Crossref]

Phys. Rev. Lett. (3)

M. A. LaPointe, R. B. Yoder, C-B. Wang, A. K. Ganguly, and J. L. Hirshfield, “Experimental demonstration of high efficiency electron cyclotron autoresonance acceleration,” Phys. Rev. Lett. 76, 2718–2721 (1996).
[Crossref] [PubMed]

A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Brömmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G Meyer, and G. G. Paulus, “Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator,” Phys. Rev. Lett. 111, 074802 (2013).
[Crossref] [PubMed]

J.-X. Li, K. Z. Hatsagortsyan, and C. H. Keitel, “Robust signatures of quantum radiation reaction in focused ultrashort laser pulses,” Phys. Rev. Lett. 113, 044801 (2014).
[Crossref] [PubMed]

Phys. Rev. ST-AB (1)

B. J. Galow, J-X. Li, Y. I. Salamin, Z. Harman, and C. H. Keitel, “High-quality multi-GeV electron bunches via cyclotron autoresonance,” Phys. Rev. ST-AB 16, 081302 (2013).

Phys. Usp. (1)

V. P. Milant’ev, “Cyclotron autoresonance: 50 years since its discovery,” Phys. Usp. 56, 823–832 (2013).
[Crossref]

Physica B (1)

J. Singleton, C. H. Mielke, A. Migliori, G. S. Boebinger, and A. H. Lacerda, “The national high magnetic field laboratory pulsed-field facility at Los Alamos National Laboratory,” Physica B 346, 614–617 (2004).
[Crossref]

Other (4)

See: “National High Magnetic Field Laboratory, Pulsed Field Facility,” http://www.lanl.gov/orgs/mpa/nhmfl/ , and “60 tesla long pulse magnet,” http://www.lanl.gov/orgs/mpa/nhmfl/60TLP.shtml .

J.-X. Li, Y. I. Salamin, K. Z. Hatsagortsyan, and C. H. Keitel, “Fields of an ultrashort tightly-focused laser pulse,” http://arxiv.org/pdf/1504.00988 .

S. Y. Lee, Accelerator Physics, 2nd ed. (World Scientific, 2004).
[Crossref]

S. V. Shchelkunov, T. C. Marshall, J. L. Hirshfield, C-B. Wang, and M. A. LaPointe, “The LACARA vacuum laser accelerator experiment: Beam positioning and alignment in a strong magnetic field,” in AIP Conference Proceedings 877: 12th Advanced Accelerator Concepts Workshop, M. Condeand and C. Eyberger, eds. (AIP, 2006), pp. 880–887.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of a possible ALA setup. A magnetic field B is used to bend the electron beam for collision with the THz pulse, which propagates along +z (propagation vector k ). Front of the pulse catches up with the electron precisely at the origin of coordinates O. The magnetic field B s = B s k ^ is responsible for the electron cyclotron motion.
Fig. 2
Fig. 2 Contour plot of the energy gained by a single electron, injected with γ0 = 3 for interaction with a single circularly polarized Gaussian pulse, as functions of the magnetic field strength Bs and the waist radius at focus w0. The pulse power is P = 100 TW, and its frequency is f = 4 THz (λ = 75 μm, period T0 = 250 fs = FWHM).
Fig. 3
Fig. 3 (a) Single electron energy gain (dashed blue) and energy gradient (solid red) as functions of its forward excursion distance. The parameters are those of Fig. 2, in addition to w0 = 17λ 1.27 mm, and Bs 39.6 T. (b) Actual trajectory of the electron under the conditions of (a).
Fig. 4
Fig. 4 Exit kinetic energy distribution of a 1000 ensemble of electrons. Interacting: Coulomb electron-electron interactions are turned on, and Non-interacting: Coulomb interactions are turned off. Electrons are assumed, initially, to be distributed randomly within a cylinder of radius 0.232 μm and height 4.642 μm, and centered at the origin of coordinates. Electron kinetic energy is, initially, distributed normally, with mean K ¯ 0 = 1.022 MeV (or γ0 = 3) and spread ΔK0 = 0.1%.
Fig. 5
Fig. 5 Near-resonance magnetic field dependence (blue and circles) upon: (a) the THz pulse duration τ in units of the radiation field cycle T0, (b) the THz power, (c) the scaled injection energy γ0, and (d) the THz frequency. For each data point in (a) – (d) the average energy gradient in GeV/m is given (red and crosses). Each data point is a result of calculations, along the lines of the work which led to Figs. 2 and 3, and employing their (other) parameters. For example, in (a) γ0 = 3, the power is 100 TW, w0 = 17 λ, and f = 4 THz, and so on.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

r ω c ω D = e B s m ω 1 + β 0 1 β 0 1 ,
d ε d t = e c β E ,
d β d t = e γ m c [ β ( β E ) ( E + c β × B ) ] ,
E x = T { R S ω 0 + c z r [ ( R k 0 x 2 / z r ) ( R S ) + i ω 0 x 2 / ( 2 z r 2 ) ( R S ) 2 ] } ,
E y = T x y ( ω 0 z r 0 ) { 1 ( R S ) + i c / ( 2 z r ) ( R S ) 2 } ,
E z = T { i ω 0 z r x S [ P R + Q 2 k 0 z r R 2 + 2 / P k 0 2 L 2 ] + 2 c 2 L 2 z r x S 2 [ 1 L 2 ( 2 Q R ) 8 z r 2 R 3 2 / P 2 k 0 2 L 2 ] } ,
B x = 0 , B y = i T R c [ P Q / R 2 2 k 0 z r + 2 / P k 0 2 L 2 ] ; B z = T c y z r ,
E 0 = ω 0 a 0 N , ω 0 = c k 0 w = w 0 1 + α 2 , P = ( 1 + 2 i ζ k 0 L 2 ) , ζ = z c t ,
Q = 1 + i α ρ 2 , ρ = x 2 + y 2 w 0 , R = 1 + i α , S = i ω 0 [ P + Q / R 2 2 k 0 z r + 2 / P k 0 2 L 2 ] ,
T = E 0 w 0 w P R exp [ ζ 2 L 2 ρ 2 1 + α 2 + i φ ] , φ = φ 0 + k 0 ζ + α ρ 2 1 + α 2 tan 1 α .
G = ( γ γ 0 ) m c 2 ,
d G d z = e ( β E β z ) ,

Metrics